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A multi-stage gravitational search algorithm (MSGSA) is proposed here to solve the 

optimization-based damage detection of structural systems. Natural frequency changes of a 

structure are considered as a criterion for damage occurrence. Finite element method and 

structural dynamic principles are also employed to evaluate the required natural frequencies. 

The structural damage detection problem is first transformed into a standard optimization 

problem dealing with continuous variables, and then the MSGSA is utilized to solve the 

optimization problem for finding the site and severity of damage. In order to assess the 

performance of the proposed method for damage identification, an example with 

experimental data and two numerical examples with considering measurement noise are 

considered. All the results demonstrate the effectiveness of the proposed method for 

accurately determining the site and extent of multiple structural damage. Also, the 

performance of the MSGSA for damage detection compared to the standard gravitational 

search algorithm (GSA) is confirmed by examples. 
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1. Introduction 

Many structural systems may experience some local 

damage during their functional age. As the local damage is 

accurately detected and then rehabilitated within an 

appropriate time span, it will lead to increasing the total age 

of the system. Moreover, neglecting the local damage may 

cause to reduce the functional age of structural systems or 

even an overall failure of the structures. As a result, health 

monitoring and structural damage identification is a vital 

topic that has drawn wide attention from various 
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engineering fields such as civil, mechanical, and aerospace 

engineering. The theoretical basis of damage detection lies 

in the fact that responses of a structure vary because of its 

inherent damage. This gives rise to the possibility of 

identifying the damage from the variation of structural 

responses before and after damage occurs. In particular, the 

damage detection formulates the relationship between the 

damage and modal parameter changes of a structure. A 

common practice is to obtain the fingerprint or baseline of 

modal parameters when a structure is in perfect health. 

Later, when the changes of these parameters occur, it is 
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possible to investigate the structural damage which brings 

about the changes. During the last decades, many 

approaches have been introduced to determine the location 

and extent of eventual damage in the structural systems. 

One type of the methods employs the optimization 

algorithms for solving the damage detection problem. 

Many successful applications of damage detection using 

an optimization algorithm have been reported in the 

literature. Mares and Surace used the genetic algorithm 

(GA) to maximize an objective function in order to identify 

macroscopic structural damage in elastic structures from 

measured natural frequencies and mode shapes [1]. A 

procedure for detecting the damage in beam-type structure 

based on a micro genetic algorithm using incomplete and 

noisy modal test data was proposed by Au et al. [2]. An 

application of GA for determining the damage site and 

extent of flexible bridge maximizing a correlation 

coefficient, named the multiple damage location assurance 

criterion (MDLAC) has been proposed by Koh and Dyke 

[3]. A fault diagnosis method in beam-like structures based 

on binary and continuous genetic algorithms and a model 

of the damaged structure has been proposed by Vakil-

Baghmisheh et al. [4]. A two-stage method of determining 

the location and extent of multiple-beam-type structure 

damage by using the information fusion technique and 

micro-search genetic algorithm (MSGA) has been 

presented by Guo and Li [5]. Structural damage detection 

using an efficient correlation-based index (ECBI) and a 

modified genetic algorithm (MGA) has been introduced by 

Nobahari and Seyedpoor [6]. A self-adaptive multi-

chromosome genetic algorithm (SAMGA) for localizing 

and quantifying the damage of truss structures was 

presented by Villalba and Laier [7]. An application of the 

bee algorithm (BA) to the problem of crack detection in 

beams was introduced by Moradi et al. [8]. A hybrid 

particle swarm optimization–simplex algorithm (PSOS) 

for structural damage identification using frequency 

domain data has been proposed by Begambre and Laier  

[9]. In order to find the location and extent of structural 

damage, a multi-stage particle swarm optimization 

(MSPSO) assuming a discrete nature for damage variables 

has been introduced by Seyedpoor [10]. Nouri Shirazi et al.  

used the modified particle swarm optimization (MPSO) to 

minimize an objective function (ECBI) in order to identify 

structural damage from changes of natural frequencies 

[11]. A mixed particle swarm-ray optimization together 

with harmony search (HRPSO) for localizing and 

quantifying the structural damage was presented by Kaveh 

et al. [12]. The differential evolution algorithm (DEA) for 

structural damage identification using natural frequencies 

has been proposed by Seyedpoor et al. [13]. The ant colony 

optimization (ACO) for structural damage identification 

has been proposed by Braunet al. [14]. An improved hybrid 

Pincus-Nelder-Mead optimization algorithm (IP-NMA) 

for structural damage identification using natural 

frequencies has been proposed by Nhamage et al. [15]. 

However, the performance of gravitational search 

algorithm (GSA) and its other versions for solving the 

damage detection problem have not been assessed 

seriously. 

In this study, a multi-stage gravitational search 

algorithm (MSGSA) is introduced to identify multiple 

structural damage. For this, the problem of structural 

damage detection is first transformed into the standard 

form of an optimization problem dealing with real damage 

variables. The MSGSA is utilized as an optimization solver 

for finding the site and severity of damaged elements. 

Three illustrative test examples are considered to show the 

performance of the proposed method. The results show that 

the MSGSA can provide a robust tool for determining the 

site and extent of multiple damage precisely and quickly. 

2. Optimization Based Damage Detection Method  

Structural damage detection using non-destructive 

methods has received significant attention during the last 

years. The fundamental law is that damage will change the 

mass, stiffness, and damping properties of a structure. Such 

a change would lead to changes in the response data of the 

structure. This rule enables us to identify the damage by 

comparing the response data of the structure before and 

after damage. The damage detection problem can be 

interpreted to find a set of damage variables minimizing or 

maximizing a correlation index between response data of a 

structure before and after damage [1, 3-8, 10, 11, 13, 14]. 

Therefore, the problem can be transformed into an 

optimization problem as: 

Find: XT = {x1, x2, . . . , xn} 

Minimize: Obj (X)   

Subject to:  X1 ≤ X ≤ Xu  

(1) 

where XT = {x1, x2, . . . , xn} is a damage variable vector 

containing the location and size of n unknown damages; Xl 

and Xu are the lower and upper bounds of the damage vector 

and Obj (X) is an objective function that need to be 

minimized. 

In many researches, various correlation indices were 

chosen as the objective function. In this study, an efficient 

correlation-based index (ECBI) introduced in [6] is used as 

the objective function for the optimization given by: 

𝐸𝐶𝐵𝐼 (𝑋) = −
1

2
[

|Δ𝐹𝑇 .  δ𝐹(𝑋)|2

(Δ𝐹𝑇 .  Δ𝐹)(δ𝐹𝑇(𝑋). δ𝐹(𝑋))

+
1

𝑛𝑓
∑

min(𝑓𝑖(𝑋), 𝑓𝑑𝑖)

max(𝑓𝑖(𝑋), 𝑓𝑑𝑖)

𝑛𝑓

𝑖=1

] 

(2) 
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In the objective function, ΔF is the change of frequency 

vector of damaged structure with respect to the frequency 

vector of healthy structure. The ΔF can be defined as: 

Δ𝐹 = {Δ𝑓𝑖 =
𝑓ℎ𝑖 − 𝑓𝑑𝑖

𝑓ℎ𝑖
} , 𝑖 = 1,2, . . . , 𝑛𝑓 

(3) 

where fhi and fdi are the ith component of healthy 

frequency vector Fh and damaged frequency vector Fd of 

the structure, respectively. The number of total frequencies 

considered for damage detection is denoted by nf. 

Also, δF(X) is the change of frequency vector of an 

analytical model with respect to the frequency vector of 

healthy structure. The δF(X) can be defined as: 

δ𝐹(𝑋) = {Δ𝑓𝑖(𝑋) =
𝑓ℎ𝑖 − 𝑓𝑖(𝑋)

𝑓ℎ𝑖
} ,  𝑖 = 1,2, . . . , 𝑛𝑓 

(4) 

where fi(X) is the ith component of an analytical 

frequency vector F(X) of the structure. 

The ECBI varies from a minimum value −1 to a 

maximum value 0. It will be minimal when the vector of 

analytical frequencies becomes identical to the frequency 

vector of the damaged structure, that is, F(X)= Fd. 

In this study, the damage variables for truss and frame 

structures are defined via a relative reduction of elasticity 

modulus of an element as: 

𝑥𝑖 =
𝐸 − 𝐸𝑖

𝐸
,     𝑖 = 1,2, . . . , 𝑛 

(5) 

where E is the original modulus of elasticity and Ei is the 

final modulus of elasticity of ith element. 

By solving the Eq. (1) using an optimization algorithm 

the damage variables can be determined. A non-zero value 

for the variable xi represents that the ith element of the 

structure is damaged while a zero value denotes that the 

element is healthy. 

3. The Proposed Optimization Algorithm  

The selection of an efficient algorithm for solving the 

damage optimization problem is a critical issue, because 

the damage identification problem has many local 

solutions. In this study, a multi-stage gravitational search 

algorithm (MSGSA) is proposed to properly solve the 

damage detection problem. In the remaining part of this 

section, the original gravitational search algorithm (GSA) 

is briefly described at first and then the proposed MSGSA 

is discussed. 

3.1. Gravitational Search Algorithm (GSA) 

Gravitational search algorithm was introduced by 

Rashedi et al. [17] in 2009 to solve optimization problems. 

The population-based heuristic algorithm is based on the 

law of gravity and mass interactions. The algorithm is 

comprised of collection of searcher agents that interact 

with each other through the gravity force. The agents are 

considered as objects and their performance is measured by 

their masses. The gravity force causes a global movement 

where all objects move towards other objects with heavier 

masses. The agents are actually obeying the law of gravity 

as shown in Eq. (6) and the law of motion in Eq. (7). 

𝐹 = 𝐺 (
𝑀1𝑀2

𝑅2 ) 
(6) 

𝑎 =
𝐹

𝑀
 

(7) 

where F represents the magnitude of the gravitational 

force, G is gravitational constant, M1 and M2 are the mass 

of the first and second objects and R is the distance between 

the two objects. Eq. (6) shows that in the Newton law of 

gravity, the gravitational force between two objects is 

directly proportional to the product of their masses and 

inversely proportional to the square of the distance between 

the objects. Moreover, in Eq. (7), Newton’s second law 

shows that when a force, F, is applied to an object, its 

acceleration, a, depends on the force and its mass, M. 

In GSA, an agent has two parameters which are position 

and mass. The position of the agent represents the solution 

of the problem, while the mass of the agent is determined 

using a fitness function. Agents are attracted by the 

heaviest agent. Hence, the heaviest agent presents an 

optimum solution in the search space. The steps of GSA 

can be summarized as follows [17-19]: 

Step 1) Agents initialization 

The positions of the N number of agents are initialized 

randomly. 

𝑋𝑖 = (𝑥𝑖
1, … , 𝑥𝑖

𝑑 , … , 𝑥𝑖
𝑛),     𝑖 = 1,2, … , 𝑁 (8) 

where 𝑥𝑖
𝑑 represents the positions of the ith agent in the 

dth dimension, while n is the dimension of the problem. 

Step 2) Fitness evolution and best fitness computation  

For minimization problems, the fitness evolution is 

performed by evaluating the best and worst fitness of all 

agents at each iteration. 

𝑏𝑒𝑠𝑡(𝑡) = min𝑓𝑖𝑡𝑗(𝑡)         , 𝑗є{1,2, … , 𝑁} (9) 

𝑤𝑜𝑟𝑠𝑡(𝑡) = max𝑓𝑖𝑡𝑗(𝑡)     , 𝑗є{1,2, … , 𝑁} (10) 

where 𝑓𝑖𝑡𝑗(𝑡) represents the fitness value of the jth agent 

at iteration t, best(t) and worst(t) represents the best and 

worst fitness at iteration t. 

Step 3) Gravitational constant computation  
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In the algorithm, gravitational constant G is reduced 

with iteration to control the search accuracy and it is 

computed at iteration t as [18, 19]: 

𝐺(𝑡) = 𝐺0. 𝑒
(−

𝛼𝑡
𝑇

)
 (11) 

where 𝐺0 = 100 and 𝛼 = 20 are initialized at the 

beginning of the algorithm [19]. Also, T is the total number 

of iterations. 

Step 4) Calculation of masses of the agents  

Mass for each agent is calculated at iteration t as: 

𝑀𝑖(𝑡) =
𝑚𝑖(𝑡)

∑ 𝑚𝑖(𝑡)𝑁
𝑖=1

 
(12) 

𝑚𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)

𝑏𝑒𝑠𝑡(𝑡) − 𝑤𝑜𝑟𝑠𝑡(𝑡)
 

(13) 

where 𝑚𝑖(𝑡) represents the compatibility of the ith agent 

at iteration t and 𝑀𝑖(𝑡) the mass of the ith agent at iteration 

t. 

Step 5) Calculation of accelerations of agents  

Acceleration of the ith agent at iteration t is computed 

using Eq. (14): 

𝑎𝑖
𝑑(𝑡) =

𝐹𝑖
𝑑(𝑡)

𝑀𝑖(𝑡)
 

(14) 

where 𝐹𝑖
𝑑(𝑡) is the total force acting on ith agent calculated 

as: 

𝐹𝑖
𝑑(𝑡) = ∑    rand𝑗 .

𝑗є𝐾𝑏𝑒𝑠𝑡 ,𝑗≠𝑖

𝐹𝑖𝑗
𝑑(𝑡) (15) 

in which, Kbest is the set of first K agents with the best 

fitness value and biggest mass. Kbest will decrease linearly 

with iteration and at the end there will be only one agent 

applying force to the others. Also, 𝐹𝑖𝑗
𝑑(𝑡) is computed using 

Eq. (16): 

𝐹𝑖𝑗
𝑑(𝑡) = 𝐺(𝑡).

𝑀𝑖(𝑡). 𝑀𝑗(𝑡)

𝑅𝑖𝑗(𝑡) + 𝜀
(𝑥𝑗

𝑑(𝑡) − 𝑥𝑖
𝑑(𝑡)) 

(16) 

where 𝐹𝑖𝑗
𝑑(𝑡)) is the force acting on agent i from agent j 

at dth dimension and tth iteration, 𝑅𝑖𝑗(𝑡) is the Euclidian 

distance between two agents i and j at iteration t, G(t) is the 

computed gravitational constant at the same iteration while 

ε is a small constant. 

Step 6) Updating velocity and positions of agents: 

Velocity and the position of the agents at next iteration 

(t+1) are computed based on the following equations: 

𝑣𝑖
𝑑(𝑡 + 1)  = rand𝑖  𝑣𝑖

𝑑(𝑡) + 𝑎𝑖
𝑑(𝑡) (17) 

𝑥𝑖
𝑑(𝑡 + 1)  = 𝑥𝑖

𝑑(𝑡) + 𝑣𝑖
𝑑(𝑡 + 1) (18) 

where 𝑉𝑖(𝑡 + 1) represents the velocity of the ith agent at 

iteration t+1 and 𝑋𝑖(𝑡 + 1) indicates the mass of the ith 

agent at iteration t+1. 

Step 7) Check the convergence  

Steps 2 to 6 are repeated until the stop criteria are met. 

The best fitness value at the final iteration is considered as 

the global fitness while the position of the corresponding 

agent at specified dimensions is taken as the global solution 

of the problem. The flowchart of GSA can be simply shown 

in Fig. 1. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The flowchart of GSA 

3.2. The multi-stage gravitational search algorithm 

(MSGSA) 

A multi-stage gravitational search algorithm (MSGSA) 

is proposed here to accurately detect the multiple structural 

damages. Based on this algorithm, the location of damaged 

elements of a structure found in each optimization stage is 

imposed on the next optimization stage while the effects of 

healthy elements on the subsequent stage are neglected. By 

this approach, all healthy elements are successively 

eliminated during some stages and the algorithm converges 

to the correct locations and extents of flawed elements. 

During the optimization stages, the dimension of 

optimization problem are decreased gradually and this 

makes the time and total computational cost of the 

Generate initial population 

Evaluate the fitness for each agent 

Update the G 

Calculate m and M for each agent 

Calculate a for each agent 

Update velocity and position for each agent 

Save the final optimal solution and stop the 

process 

Meeting end 

of criterion? 

No 

Yes 
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optimization reduce. The step by step summary of the 

multi-stage gravitational search algorithm (MSGSA) is as 

follows: 

Step 1) Set the initial number of damage variables, n to 

the total number of structural elements. Randomly generate 

the initial position vectors of agents distributed throughout 

the design space bounded by the specific limits: Xl≤ Xi≤ 
Xu, i = 1, ..., N. 

Step 2) Employ the standard GSA to find the optimal 

solution, 𝑋𝐺𝑆𝐴
𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛} 

Step 3) Find the locations of healthy elements, that is, 

for all components of damage vector 𝑋𝐺𝑆𝐴 find i: 𝑥𝑖 = 0, 

and also determine the total number of healthy elements, 

m. 

Step 4) Remove the healthy elements from the set of 

damage variables and reduce the dimension of 

optimization problem from n to n-m. 

Step 5) Employ a new GSA stage to find the optimal 

solution of current stage, i.e. 𝑋𝐺𝑆𝐴
𝑇 = {𝑥1, 𝑥2, … , 𝑥𝑛−𝑚}. 

Step 6) Check the convergence by comparing the 

optimal solutions of two sequential optimization stages. If 

two vectors are identical go to step 7, otherwise go to step 

3. 

Step 7) Save the final optimal solution and stop the 

optimization process. According to steps 1 to 7, the 

flowchart of the MSGSA can be simply shown in Fig. 2. 

4. Test examples  

In order to demonstrate the capabilities of the proposed 

approach for identifying the damage, three illustrative test 

examples selected from the literature are considered. The 

first example is a 16-element cantilevered beam with 

experimental data, the second example is a 47-bar planar 

truss and the last example is a 45-element frame (A five-

story and four-span frame). In 47-bar planar truss and 45-

element frame, the effect of measurement noise on the 

efficiency of the method is studied. 

4.1. Sixteen-element cantilevered beam with experimental 

data  

The proposed method is validated using experimental 

data obtained from test on the 16-element cantilevered 

beam by Sinha et al [16]. Table 1 gives details of the 

geometric and material properties of the beam. The modal 

test was conducted by Sinha et al. on the beam without any 

crack and also with a single crack at 275mm (element 5) 

with the crack depths 8 mm (damage extent 0.32) and 12 

mm (damage extent 0.48). Table 2 gives the identified 

experimental natural frequencies. 

A finite element model of the cantilever beam was 

constructed using Euler-Bernoulli beam elements 

including translational and rotational springs to simulate 

the boundary conditions at the clamped end of the beam. 

The finite element model, shown schematically in Fig. 3 

has 16 elements and 34 degrees of freedom. The boundary 

stiffnesses, kt = 26.5 𝑀𝑁 𝑚⁄   and kƟ = 150 𝑘𝑁. 𝑚 𝑟𝑎𝑑⁄ , 

are required to simulate the translation and rotation 

flexibility of the clamped support [16]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. The flowchart of the MSGSA 

For this example, two damage scenarios of experimental 

test [16], listed in Table 3, are studied and the first four 

natural frequencies are used for damage detection. 

Table 1. 

 The properties of 16-element cantilevered beam 
Boundary conditions Cantilever 

Material Aluminum 

Young's modulus (E) 69.79 GN m2⁄  

Mass density (ρ) 2600 kg m2⁄  
The Poisson Ratio (ν) 0.33 

Beam length (L) 996 mm 
Beam width (w) 50 mm 

Beam depth (d) 25 mm 

Boundary stiffnensses 

kt = 26.5 MN m2⁄  
 

kƟ = 150 kN. m rad⁄  
 

 

Set the initial number of optimize design variables, n to 

the total number of structural element (Generate initial 

population) 

Employ the standard PSO to find the optimal solution 

XT
GSA={x1,x2,…xn} 

 

Locate the healthy elements and the total number of 

healthy elements (m)  

Remove the m healthy elements from the set of n design 

variables and replace n with n-m 

Employ a new GSA stage to find the optimal solution 

XT
GSA={x1,x2,…xn-m} 

 

Save the final optimal solution and stop the process 

Is the convergence 

met? 

No 

Yes 
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Table 2.  

The natural frequencies of the beam without any crack and with one 

crack [16] 

 No crack      dc1=8 mm 

    x1=275 mm 

      dc1=12 mm 

      x1=275 mm 

Mode Experimental 

natural 

frequencies 

(Hz) 

Experimental 

natural 

frequencies 

(Hz) 

Experimental 

natural 

frequencies 

(Hz) 

1 20 19.75 19 
2 124.5 124.063 123 

3 342.188 336.875 326.563 
4 664.375 662.313 660.313 

 

 

 

Figure 3. The finite element model for the 16-element cantilevered 

beam 

Table 3.  

Two different experimental damage scenarios induced in a 16-element 

beam 

Scenario 1 Scenario 2 

Element 

number 

Damage 

extent 

Element 

number 

Damage 

extent 

5 0.32 5 0.48 
 

The specifications of standard GSA and the proposed 

MSGSA for applying to the damage detection problem are 

also given in Table 4. 

Table 4. 

 The specifications of GSA and MSGSA 
Algorithm Parameter Description Value 

GSA npop The number of agents 50 

maxiter 
The maximum number of 

iterations 
1000 

G0 
The primal value of the 

gravitational constant 

100 

α 

The exponent coefficient of 

gravitational constant 

equation 

20 

MSGSA npop The number of GSA agents 40 

maxiter 
The maximum iterations 

performing by GSA 

100 

max_stage 
The maximum number of 

optimization stages 

2 

 

 

The convergence of the GSA is met when the objective 

function does not considerably change after 150 successive 

iterations or the maximum number of iterations is attained. 

Also, the convergence of the MSGSA is met when the all 

optimization stages are attained. The reason why the 

convergence conditions are different in two algorithms is 

that each of the algorithms has been considered in the best 

possible conditions to achieve a completely correct answer 

with the most minimal number of analyses. In order to 

consider the stochastic nature of the optimization process 

using two algorithms, 10 independent sample runs are 

made for each damage scenario. The damage identification 

results of damage scenario 1 using two algorithms are 

given in Tables 5a and 5b, respectively. The average 

damage ratios for scenario 1 using two algorithms are also 

shown in Figs. 4a and 4b, respectively. The damage 

identification results of damage scenario 2 are given in 

Tables 6a and 6b, respectively. The average damage ratios 

for scenario 2 are also shown in Figures 5a and 5b, 

respectively.

 

 

Table 5a.  

The damage detection results of 16-element beam for scenario 1 via GSA 
Element numbers 

Run numbers 1 ... 5 ... 11 12 ... 16 
Required 

modal analyses 
ECBI 

1 0  0.338  0.086 0.04  0 23850 -0.978 

2 0  0.338  0.086 0.04  0 25200 -0.978 

3 0  0.338  0.086 0.04  0 24050 -0.978 

4 0  0.338  0.086 0.04  0 24650 -0.978 

5 0  0.338  0.086 0.04  0 22850 -0.978 

6 0  0.338  0.086 0.04  0 23600 -0.978 

7 0  0.338  0.086 0.04  0 23800 -0.978 

8 0  0.338  0.086 0.04  0 24600 -0.978 

9 0  0.338  0.086 0.04  0 25800 -0.978 

10 0  0.338  0.086 0.04  0 26000 -0.978 

Average 0  0.338  0.086 0.04  0 24440 -0.978 

Actual damage 0  0.32  0 0  0 - -1 
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Table 5b.  

The damage detection results of 16-element beam for scenario 1 via MSGSA 
Element numbers 

Run numbers 1 ... 5 ... 11 12 ... 16 
Required 

modal analyses 
ECBI 

1 0  0.348  0.057 0.06  0 8080 -0.978 

2 0  0.429  0.065 0.054  0 8080 -0.978 

3 0  0.348  0.042 0.079  0 8080 -0.978 

4 0  0.442  0.073 0.065  0 8080 -0.978 

5 0  0.359  0.044 0.074  0 8080 -0.978 

6 0  0.383  0.064 0.062  0 8080 -0.978 

7 0  0.373  0.052 0.061  0 8080 -0.978 

8 0  0.351  0.061 0.058  0 8080 -0.978 

9 0  0.386  0.072 0.055  0 8080 -0.978 

10 0  0.361  0.043 0.063  0 8080 -0.978 

Average 0  0.376  0.057 0.063  0 8080 -0.978 

Actual damage 0  0.32  0 0  0 - -1 
 

 

 

 
 

Figure 4a. Final damage ratios of the 16-element beam for scenario 1 via 

GSA 

Figure 4b. Final damage ratios of the 16-element beam for scenario 1 via 

MSGSA 

 

Table 6a.  

The damage detection results of 16-element beam for scenario 2 via GSA 
Element numbers 

Run numbers 1 ... 5 ... 11 ... 16 
Required 

modal analyses 
ECBI 

1 0  0.431  0.062  0 22900 -0.992 

2 0  0.431  0.062  0 23650 -0.992 

3 0  0.431  0.062  0 24300 -0.992 

4 0  0.431  0.062  0 25150 -0.992 

5 0  0.431  0.062  0 22250 -0.992 

6 0  0.431  0.062  0 23150 -0.992 

7 0  0.431  0.062  0 22050 -0.992 

8 0  0.431  0.062  0 26600 -0.992 

9 0  0.431  0.062  0 24200 -0.992 

10 0  0.431  0.062  0 24450 -0.992 

Average 0  0.431  0.062  0 23470 -0.992 

Actual damage 0  0.48  0  0 - -1 
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Table 6b.  

The damage detection results of 16-element beam for scenario 2 via MSGSA 
Element numbers 

Run numbers 1 ... 5 ... 11 ... 16 
Required 

modal analyses 
ECBI 

1 0  0.525  0.031  0 8080 -0.9945 

2 0  0.525  0.038  0 8080 -0.9945 

3 0  0.566  0.037  0 8080 -0.9946 

4 0  0.53  0.038  0 8080 -0.9945 

5 0  0.604  0.015  0 8080 -0.994 

6 0  0.527  0.032  0 8080 -0.9944 

7 0  0.561  0.036  0 8080 -0.9944 

8 0  0.56  0.037  0 8080 -0.9946 

9 0  0.556  0.048  0 8080 -0.9945 

10 0  0.519  0.044  0 8080 -0.9946 

Average 0  0.547  0.036  0 8080 -0.9945 

Actual damage 0  0.48  0  0 - -1 
 

 

  

Figure 5a. Final damage ratios of the 16-element beam for scenario 2 via 

GSA 

Figure 5b. Final damage ratios of the 16-element beam for scenario 2 via 

MSGSA 

All of the results shown in the tables and figures 

demonstrate that the best solutions in terms of actual 

damage identification and the total number of finite 

element analyses (FEAs) required are obtained by the 

MSGSA. The average number of FEAs requiring for 

scenarios 1 and 2 of MSGSA are 8080, while the average 

number of FEAs needing for GSA is 23440 and 23470, 

respectively. It is revealed that the MSGSA has a better 

performance when compared to the GSA. 

4.2. Forty-seven-bar planar truss  

The 47-bar planar power line tower [11], shown in Fig. 

6, is considered to show the robustness of the proposed 

method. The structure has 47 members and 22 nodes. The 

truss is modeled using the conventional finite element 

method without internal nodes, leading to 41 degrees of 

freedom. All members are made of steel, and the material 

density, modulus of elasticity and area of each element are 

0.3 lb/in3, 30000 ksi and 2 in2, respectively. Damage in the 

structure is simulated as a relative reduction in the 

elasticity modulus of individual elements. Therefore, the 

optimization problem of damage identification has 47 

damage variables. Four different damage scenarios, given 

in Table 7, are induced in the structure, and the MSGSA 

and the GSA are tested for each scenario. For identifying 

the damage scenarios 1 and 2, the first 10 natural 

frequencies and for identifying the damage scenarios 3 and 

4, the first 15 natural frequencies of the structure are 

considered. In order to investigate the noise effect on the 

performance of the proposed method, measurement noise 

is considered here by polluting the natural frequencies 

using a standard error of ±0.15 % [3, 4, 11 and 12]. For 

identifying the damage scenarios 1 and 2, agent numbers 

and the maximum numbers of GSA iterations are set to 40 

and 1000, respectively. Also, for identifying the damage 

scenarios 3 and 4, agent numbers and the maximum 

numbers of GSA iterations are set to 50 and 2000, 

respectively. For identifying the damage scenarios 1 and 2, 

agent numbers, the maximum numbers of MSGSA 
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iterations and the maximum number of optimization stages 

are set to 25, 700 and 20, respectively. Also, for identifying 

the damage scenarios 3 and 4, agent numbers and the 

maximum numbers of MSGSA iterations and the 

maximum number of optimization stages are set to 20, 200 

and 20, respectively. 

The convergence of the GSA is met when the objective 

function reaches -0.995 or the maximum number of 

iterations is attained. For identifying the damage scenarios 

1 and 2, the convergence of the MSGSA is met when the 

objective function reaches -0.967. Also, for identifying the 

damage scenarios 3 and 4, the convergence of the MSGSA 

is met when the objective function reaches -0.994. In order 

to consider the stochastic nature of the optimization 

process using GSA and MSGSA ten independent sample 

runs are made for each damage scenario. The solutions of 

GSA and MSGSA for damage scenarios 1 to 4 are given in 

Tables 8–15 and Figs. 7-14.

 

Figure 6. The finite element model for the 47-bar planar truss 

 

Table 7.  

Four different damage scenarios induced in 47-bar planar truss 
Scenario 1 Scenario 2 Scenario 3 Scenario 4 

Element 

number 
Damage extent 

Element 

number 
Damage extent 

Element 

number 
Damage extent 

Element 

number 
Damage extent 

10 0.30 30 0.30 10 0.30 40 0.30 

- - - - 30 0.30 41 0.20 
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Table 8.  

The damage detection results of 47-bar planar truss for scenario 1 via GSA 
Element numbers 

Run numbers 1 ... 10 ... 47 
Required 

modal analyses 
ECBI 

1 0  0.295  0 40040 -0.9858 

2 0  0.158  0 40040 -0.9722 

3 0.016  0.263  0 40040 -0.9681 

4 0  0.204  0 40040 -0.9707 

5 0  0.244  0 40040 -0.9733 

6 0  0.252  0 40040 -0.9726 

7 0.01  0.256  0 40040 -0.9647 

8 0  0.185  0 40040 -0.9791 

9 0  0.323  0 40040 -0.9858 

10 0  0.14  0 40040 -0.9725 

Average 0.0026  0.232  0 40040 -0.9749 

Actual damage 0  0.3  0 - -1 
 

 

 

Table 9.  

The damage detection results of 47-bar planar truss for scenario 1 via MSGSA 
Element numbers 

Run numbers 1 ... 10 ... 47 
Required 

modal analyses 
ECBI 

1 0  0.284  0 17525 -0.9922 

2 0  0.279  0 17525 -0.99 

3 0  0.146  0 17525 -0.9821 

4 0  0.108  0 17525 -0.9871 

5 0  0.276  0 17525 -0.9909 

6 0  0.267  0 17525 -0.9932 

7 0  0.255  0 17525 -0.9725 

8 0  0.116  0 17525 -0.974 

9 0  0.136  0 17525 -0.9881 

10 0  0.161  0 35050 -0.968 

Average 0  0.203  0 19278 -0.9838 

Actual damage 0  0.3  0 - -1 
 

 

 

  

Figure 7. Final damage ratios of the 47-bar planar truss for scenario 1 via 

GSA 

Figure 8. Final damage ratios of the 47-bar planar truss for scenario 1 via 

MSGSA 
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Table 10. 

 The damage detection results of 47-bar planar truss for scenario 2 via GSA 
Element numbers 

Run numbers 1 ... 30 ... 47 
Required 

modal analyses 
ECBI 

1 0  0.28  0 40040 -0.9929 

2 0.042  0.246  0 12160 -0.9951 

3 0  0.304  0 5520 -0.9983 

4 0  0.337  0 8128 -0.9955 

5 0  0.323  0 8000 -0.9972 

6 0.028  0.286  0 12840 -0.995 

7 0.013  0.268  0 40040 -0.9948 

8 0  0.273  0 40040 -0.9926 

9 0  0.272  0 8720 -0.9954 

10 0  0.278  0 10760 -0.9951 

Average 0.008  0.287  0 18624 -0.9952 

Actual damage 0  0.3  0 - -1 
 

 

 

Table 11. 

 The damage detection results of 47-bar planar truss for scenario 2 via MSGSA 
Element numbers 

Run numbers 1 ... 30 ... 47 
Required 

modal analyses 
ECBI 

1 0  0.306  0 17525 -0.9955 

2 0  0.299  0 17525 -0.9975 

3 0.024  0.272  0 17525 -0.9965 

4 0.033  0.171  0 17525 -0.9986 

5 0.026  0.297  0 17525 -0.9965 

6 0  0.289  0 17525 -0.995 

7 0  0.272  0 17525 -0.9955 

8 0  0.262  0 17525 -0.9957 

9 0  0.181  0 17525 -0.998 

10 0  0.261  0 17525 -0.9987 

Average 0.008  0.261  0 17525 -0.9968 

Actual damage 0  0.3  0 - -1 
 

 

 

  

Figure 9. Final damage ratios of the 47-bar planar truss for scenario 2 via 

GSA 

Figure 10. Final damage ratios of the 47-bar planar truss for scenario 2 via 

MSGSA 
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Table 12.  

The damage detection results of 47-bar planar truss for scenario 3 via GSA 

Element numbers 

Run numbers 1 ... 10 ... 30 ... 47 
Required 

modal analyses 
ECBI 

1 0  0.306  0.276  0 24700 -0.9955 

2 0  0.32  0.323  0 24650 -0.9951 

3 0.022  0.345  0.344  0 23350 -0.9954 

4 0.043  0.317  0.334  0 24000 -0.9951 

5 0.045  0.27  0.261  0 21750 -0.9955 

6 0.011  0.307  0.316  0 25000 -0.9956 

7 0  0.209  0.31  0 22100 -0.9951 

8 0  0.35  0.288  0 22000 -0.9952 

9 0.012  0.328  0.336  0 24700 -0.9954 

10 0  0.35  0.332  0 24200 -0.9957 

Average 0.014  0.31  0.312  0 23645 -0.9953 

Actual damage 0  0.3  0.3  0 - -1 
 

 

 

 

Table 13.  

The damage detection results of 47-bar planar truss for scenario 3 via MSGSA 

Element numbers 

Run numbers 1 ... 10 ... 30 ... 47 
Required 

modal analyses 
ECBI 

1 0  0.304  0.283  0 16080 -0.9992 

2 0  0.285  0.254  0 20100 -0.9982 

3 0  0.352  0.395  0 16080 -0.9989 

4 0.032  0.264  0.197  0 12060 -0.9991 

5 0  0.286  0.281  0 4020 -0.9994 

6 0  0.276  0.297  0 8040 -0.9991 

7 0  0.293  0.227  0 16080 -0.9983 

8 0  0.265  0.267  0 4020 -0.9988 

9 0  0.281  0.238  0 4020 -0.9992 

10 0  0.289  0.291  0 4020 -0.999 

Average 0.0032  0.289  0.273  0 10452 -0.9989 

Actual damage 0  0.3  0.3  0 - -1 
 

 

 

  

Figure 11. Final damage ratios of the 47-bar planar truss for scenario 3 via 

GSA 

Figure 12. Final damage ratios of the 47-bar planar truss for scenario 3 via 

MSGSA 
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Table 14.  

The damage detection results of 47-bar planar truss for scenario 4 via GSA 
Element numbers 

Run numbers 1 ... 40 ... 41 ... 47 
Required 

modal analyses 
ECBI 

1 0  0.279 0  0 100050 -0.9946 0.279 

2 0  0.338 0.251  0 23400 -0.9955 0.338 

3 0  0.359 0.247  0 23300 -0.9957 0.359 

4 0  0.303 0.201  0 23450 -0.9953 0.303 

5 0  0.345 0.245  0 21400 -0.9952 0.345 

6 0  0.358 0.235  0 23900 -0.9953 0.358 

7 0  0.365 0.232  0 23700 -0.9951 0.365 

8 0  0.381 0.305  0 21450 -0.9959 0.381 

9 0  0.34 0.215  0 24650 -0.9951 0.34 

10 0  0.264 0.174  0 26050 -0.995 0.264 

Average 0  0.333 0.21  0 31105 -0.9953 0.333 

Actual damage 0  0.3 0.3  0 - -1 0.3 
 

 

 

Table 15.  

The damage detection results of 47-bar planar truss for scenario 4 via MSGSA 
Element numbers 

Run numbers 1 ... 40 ... 41 ... 47 
Required 

modal analyses 
ECBI 

1 0  0.274 0.164  0 4020 -0.9944 0.274 

2 0  0.258 0.155  0 8040 -0.9981 0.258 

3 0  0.271 0.181  0 4020 -0.997 0.271 

4 0  0.254 0.146  0 32160 -0.9945 0.254 

5 0  0.277 0.164  0 4020 -0.9953 0.277 

6 0  0.225 0.153  0 4020 -0.9953 0.225 

7 0  0.207 0.141  0 12060 -0.9949 0.207 

8 0  0.239 0.108  0 4020 -0.9946 0.239 

9 0  0.277 0.213  0 4020 -0.9948 0.277 

10 0  0.264 0.179  0 8040 -0.9976 0.264 

Average 0  0.255 0.162  0 8424 -0.9957 0.255 

Actual damage 0  0.3 0.3  0 - -1 0.3 
 

 

 

  

Figure 13. Final damage ratios of the 47-bar planar truss for scenario 4 via 

GSA 

Figure 14. Final damage ratios of the 47-bar planar truss for scenario 4 via 

MSGSA 

 

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

D
a

m
a

g
e 

R
a

ti
o

Element Number

15 Mode identified damage
induced damage

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46

D
a

m
a

g
e
 R

a
ti

o

Element Number

15 Mode
identified damage
induced damage



 Journal of Civil Engineering Researchers 

2024-vol6(2)-p 33-48 

 

46 

All of the results shown in the tables and figures 

demonstrate that the best solutions in terms of actual 

damage identification and the total number of FEAs 

required are obtained by means of the MSGSA. The 

average number of FEAs requiring for scenarios 1, 2, 3 and 

4 of MSGSA are 19278, 17125, 10452 and 8442, 

respectively, while the average number of FEAs needing 

for GSA are 40040, 18628, 23645 and 31105, respectively. 

It is revealed that the MSGSA has a better performance 

when compared to the GSA. 

4.3. Forty-five-element planar frame  

A five-story and four-span frame [12] as depicted in Fig. 

15 is considered as the last example. The structure has 45 

members and 30 nodes. This frame is modeled using the 

finite element method, leading to 75 degrees of freedom. 

The sections used for the beams and columns are 

(W14×145). The area and inertia moment of each element 

are 0.0276m2 and 0.000712 m4, respectively. The modulus 

of elasticity is 210 GPa and the material density is 7780 

kg/m3.Damage in the structure is also simulated as a 

relative reduction in the elasticity modulus of individual 

elements. Two different damage scenarios are considered 

as listed in Table 16. For identifying the damage scenarios 

1 and 2, the first 12 and 14 natural frequencies of the 

structure are considered, respectively. The measurement 

noise is considered here by polluting the natural 

frequencies using a standard error of ±0.15 % [3, 4, 11 and 

12]. 

In this example, the GSA could not converge to an 

appropriate solution, accordingly only the results of 

MSGSA have been reported here. For identifying the 

damage scenario 1 using MSGSA, agent numbers, the 

maximum numbers of iterations and the maximum number 

of optimization stages are set to 50, 500 and 10, 

respectively. Also, for identifying the damage scenario 2 

using MSGSA, agent numbers and the maximum numbers 

of iterations and the maximum number of optimization 

stages are set to 40, 300 and 5, respectively. The 

convergence of the MSGSA is met when all optimization 

stages is attained. In order to consider the stochastic nature 

of the optimization process, ten independent sample runs 

are made for each damage scenario. The damage 

identification results for damage scenarios 1 and 2 using 

MSGSA are given in Tables 17 and 18, respectively. The 

average damage ratios for scenarios 1 and 2 are also shown 

in Figs. 16 and 17, respectively. 

As can be seen in the tables and figures, the MSGSA 

proposed here can accurately detect the damage sites and 

extent for most of the simulations. It is observed that the 

optimization process can achieve to the site and extent of 

actual damage truthfully. The average number of FEAs 

requiring for scenarios 1 and 2 of MSGSA are 250500 and 

60200, respectively.

 

 

Figure 15. The finite element model for the 45-element frame 

 

Table 16.  

Different damage scenarios for planar frame 
Scenario 1 Scenario 2 

Element number Damage extent Element number Damage extent 

14 0.35 9 0.30 
28 0.30 18 0.20 

38 0.35 36 0.25 
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Table 17.  

The damage detection results of 45-element frame for scenario 1 via MSGSA 
  Element numbers 

Run numbers 1 ... 14 ... 28 ... 38 ... 45 
Required 

modal analyses 
ECBI 

1 0  0.33  0.28  0.07  0 250500 -0.9974 

2 0  0.32  0.28  0.3  0 250500 -0.9981 

3 0  0.27  0.09  0.34  0 250500 -0.9993 

4 0  0.3  0.29  0.04  0 250500 -0.999 

5 0  0  0.21  0  0 250500 -0.9996 

6 0  0.19  0.17  0.19  0 250500 -0.9995 

7 0  0.3  0.2  0  0 250500 -0.9975 

8 0  0.31  0.12  0.4  0 250500 -0.9983 

9 0  0.32  0.08  0  0 250500 -0.9977 

10 0  0.34  0.02  0.17  0 250500 -0.9976 

Average 0  0.27  0.17  0.15  0 250500 -0.9984 

Actual damage 0  0.35  0.3  0.35  0 - -1 
 

 

 

Table 18.  

The damage detection results of 45-element frame for scenario 2 via MSGSA 
  Element numbers 

Run numbers 1 ... 9 ... 18 ... 36 ... 45 
Required 

modal analyses 
ECBI 

1 0  0.32  0.14  0.22  0 60200 -0.9994 

2 0  0.27  0.2  0.23  0 60200 -0.9985 

3 0  0.23  0.31  0.19  0 60200 -0.9992 

4 0  0.28  0.24  0.25  0 60200 -0.9985 

5 0  0.3  0  0.13  0 60200 -0.9989 

6 0  0.3  0.21  0.23  0 60200 -0.9977 

7 0  0.31  0.14  0.26  0 60200 -0.9993 

8 0  0.33  0.15  0.25  0 60200 -0.9986 

9 0  0.29  0.14  0.25  0 60200 -0.9991 

10 0  0.28  0.21  0.25  0 60200 -0.9986 

Average 0  0.29  0.17  0.23  0 60200 -0.9988 

Actual damage 0  0.3  0.2  0.25  0 - -1 
 

 

 

  

Figure 16. Final damage ratios of the 45-element frame for scenario 1 via 

MSGSA 

Figure 17. Final damage ratios of the 45-element frame for scenario 2 via 

MSGSA 
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5. Conclusions  

An efficient optimization procedure has been 

introduced to solve the problem of structural damage 

detection that is a highly nonlinear problem with a great 

number of local solutions. The structural damage detection 

problem is firstly formulated as a standard optimization 

problem aiming to minimize an ECBI for finding real 

damage variables. The MSGSA is proposed to properly 

solve the optimization problem. In order to assess the 

competence of the proposed approach for structural 

damage detection, three illustrative examples are tested. 

The results demonstrate that the combination of ECBI and 

MSGSA can provide a robust tool for damage detection. 

The results of the proposed approach have shown a high 

performance for the method when compared with actual 

damage induced and those of standard GSA. 
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