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Until now, various mathematical models have been proposed to characterize the behavior of 

viscoelastic materials and facilitate their implementation in finite element software. 

However, it remains unclear which configuration of the viscoelastic layer along the thickness 

and length of the beam yields the lowest creep deflection and highest damping effect under 

applied forces. To fill this literature gap, efforts are undertaken in this study to identify the 

optimal placement of the viscoelastic layers in the sandwich beam. To reach this aim, the 

creep and dynamic behaviors of sandwich beams with different boundary conditions and 

various configurations of the viscoelastic layer along the thickness and length were 

investigated using a finite element model. The obtained results indicate that the damping 

capability and creep deformations of the sandwich beam are strongly affected by the position 

of the viscoelastic layers. 
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1. Introduction 

In recent years, the application of viscoelastic materials 

has increased significantly. The growing interest in these 

materials arises from their ability to dissipate significant 

amounts of energy through shear deformation. These 

materials are predominantly utilized as energy dampers. 

On the other hand, sandwich structures are widely utilized 

in industries such as construction, bridge building, and 

shipbuilding, owing to their high bending stiffness-to-

weight ratio and the adaptability to modify fundamental 

structural parameters to meet specific design requirements. 

Sandwich beams with viscoelastic cores, known for their 

effective damping properties under dynamic loads, are 

 
* Corresponding author. Tel.: +980000000000; e-mail: m.lezgy@hsu.ac.ir. 

among the most widely used components in industrial 

structures.  

Banks et al. [1] provided a comprehensive overview of 

elastic and viscoelastic materials, aiming to enhance the 

understanding of their properties and applications. Lakes 

[2] conducted experimental studies to explore the 

properties of viscoelastic materials across a range of 

substances, including polymers, metals, piezoelectric 

materials, damping alloys, composites, and biological 

materials. Galuppi and Royer-Carfagni [3] analyzed the 

time-dependent behavior of a sandwich beam with 

viscoelastic core. The analyzed beam comprises two elastic 

layers at the top and bottom, with a viscoelastic core 

sandwiched between them. Galuppi and Roier-Carfagni 
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compared the results obtained from their analytical model 

with those obtained from three-dimensional finite element 

analysis. Kpeky et al. [4] investigated the vibration 

behavior of sandwich structures featuring soft and flexible 

cores. Given the substantial differences in the mechanical 

properties between the core and the top and bottom layers 

of sandwich structures, modeling these systems using 

higher-order elements or three-dimensional elements is 

more suitable. However, this approach increases the 

number of degrees of freedom and extends the analysis 

time. To mitigate this time-consuming process, Kpeky and 

colleagues proposed a hexahedral solid-shell linear 

element as an alternative. 

Mohammadi and Nasirshoaibi [5] detailed the modeling 

process for viscoelastic materials using ABAQUS 

software. This reference emphasizes that the behavior of 

viscoelastic materials can be effectively simulated by 

precisely defining the storage and loss shear moduli. The 

simulation results were then compared with experimental 

data. Pelayo et al. [6] investigated the temperature- and 

time-dependent behavior of polyvinylbutyral (PVB) 

material, commonly used in the construction of sandwich 

beams. This reference examines the mechanical behavior 

of laminated glass elements in which PVB, a viscoelastic 

material, is used as an interlayer. In this research, PVB 

samples were subjected to dynamic tests using a dynamic 

mechanical thermal analysis (DMTA) device across a 

temperature range of -15°C to 50°C. Subsequently, master 

curves at different temperatures were constructed using the 

Williams-Landel-Ferry model, and the Young's modulus of 

PVB was determined in both time and frequency domains.  

Froli and Lani [7] investigated the adhesion, creep, and 

stress relaxation behavior of laminated glass incorporating 

a viscoelastic PVB interlayer. In this reference, glass 

specimens were subjected to tensile loading at a 45-degree 

angle relative to their longitudinal axis. A modified shear-

compression testing method was utilized to assess evaluate 

the ultimate shear strength of the PVB interlayers. Various 

specimens of this material were fabricated  and 

experimentally tested. Following the experimental 

investigations, the viscoelastic properties of the material, 

specifically shear behavior, creep, and stress relaxation, 

were characterized  and subsequently used in numerical 

modeling. Ehrich et al. [8] proposed a new methodology 

for examining the properties of encapsulated ethylene-

vinyl acetate (EVA) and PVB. The newly developed 

method for characterizing encapsulated materials 

demonstrated high effectiveness, cost-efficiency, and 

practicality for laboratory-scale applications. Hána et al. 

[9] conducted both experimental and numerical studies to 

evaluate the mechanical properties of polymer interlayers 

used in laminated glass manufacturing. These researchers 

investigated the sensitivity of shear stiffness in two 

commonly used polymers in glass panel construction—

PVB and EVA—to variations in time and temperature. 

Hána et al. [10] investigated the four-point bending 

behavior of glass panels with PVB interlayers using both 

numerical and experimental approaches. The analyzed 

glass panels were composed of glass sheets bonded by 

polymer interlayers, which enabled the transfer of shear 

stresses between the glass layers. Hána, Eliášová and 

colleagues determined the time- and temperature-

dependent shear stiffness using a discrete Maxwell model, 

with Prony series coefficients derived from the thermo-

dynamic analysis of the polymer interlayer.  

Zemanová et al. [11] analyzed the modal characteristics 

of multilayered glass beams. Given that in laminated glass, 

rigid glass layers are bonded with soft interlayers whose 

mechanical behavior is frequency and temperature-

dependent, the system exhibits viscoelastic characteristics. 

In this reference, Zimanová et al. employed four distinct 

approaches to address to solve the nonlinear eigenvalue 

problem: complex eigenvalue computation based on the 

Newton-Raphson method, the modal kinetic energy 

method, the dynamic effective thickness method, and the 

enhanced effective thickness method. Li et al. [12] 

presented a state-space method for analyzing the dynamic 

response of double-layer beams with a viscoelastic 

interlayer. The considered double-layer system consists of 

two parallel Euler-Bernoulli elastic beams connected by a 

generalized viscoelastic interlayer. In this reference, a 

novel state-space approach is developed by introducing 

mode shape constants to address the coupling effects 

induced by the viscoelastic interlayer. Schuster et al. [13] 

investigated the linear viscoelastic behavior of polymeric 

interlayers used in laminated glass. This study examined a 

three-layer system consisting of rigid outer layers and a 

soft acoustic PVB core, emphasizing the impact of 

temperature and loading on the materials mechanical 

properties. The experimental data analysis included 

DMTA and creep testing under bending conditions. In this 

reference, the results were compared with analytical 

models developed using the generalized Maxwell model 

and a simplified model that combined multiple rheological 

models.  

Based on the studies conducted so far, it can be 

concluded that accurately predicting the dynamic behavior 

of sandwich beams with viscoelastic layers using the finite 

element method necessitates a precise determination of the 

structural properties and constitutive relationships of 

viscoelastic materials. Various methods are available to 

define the characteristics of viscoelastic materials, 

including the utilization of dynamic storage and loss 

moduli, creep or relaxation test data, or directly specifying 

of Prony series parameters. However, no comprehensive 

study has been conducted to date to determine the optimal 

placement of the viscoelastic layer. This research seeks to 

determine the optimal positioning of viscoelastic layers 
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along the thickness and length of the beam to maximize 

damping performance. 

2. Sandwich beam with viscoelastic layers  

2.1. Geometry and mechanical properties 

The considered sandwich beams of the present study are 

prismatic, featuring a rectangular uniform cross-section of 

width 𝑏, height ℎ, and length 𝐿. These sandwich beams 

comprising three glass layers and two viscoelastic layers 

made of PVB material. The total thickness of glass layers 

is 3ℎ𝐺 , while the total thickness of PVB layers is 2ℎ𝑉. 

Laminated glass beams are widely used in diverse 

structural applications. They form the primary support ribs 

or secondary purlins for large overhead glazed roofs, 

entrance canopies, and atria. They also serve as load-

bearing elements for glass floors, bridges, and stair 

stringers/treads where transparency is desired for visual 

connection or light penetration. Since the failure of glass 

structures is rather brittle, PVB laminates are incorporated 

as safety-critical enhancements. The PVB layers provide 

essential post-breakage integrity. If a laminated glass beam 

is impacted (e.g., by hail, falling debris), the PVB holds 

shattered glass fragments in place, preventing collapse and 

protecting people below. Additionally, PVB laminates 

enhance vibration damping. 

To identify the optimal position of the viscoelastic 

layers along the beam's thickness, four distinct lay-up 

schemes are assumed for the sandwich beams. These 

considered lay-up schemes are illustrated in Fig. 1. 

Notably, in all these lay-up schemes, the total cross-

sectional area of the viscoelastic layers remains identical. 

In this paper, the optimal placement of viscoelastic 

layers along the beam's longitudinal axis is also 

investigated. For this purpose, various configurations for 

positioning the PVB layer along the beam’s length are 

considered. As illustrated in Fig. 2, the three considered 

axial configurations for the placement of the PVB layer 

along the beam length are: 

• The first third of the beam, 

• The middle third of the beam,  

The last third of the beam. 

2.2. Constitutive relations for viscoelastic materials 

This section focuses on the constitutive equations of 

linear viscoelastic materials and their corresponding linear 

constitutive relations. Linear viscoelasticity is generally 

applicable only to small deformations or to materials that 

exhibit linear mechanical behavior. 

 

 

Lay-up scheme (1)  

 

 

Lay-up scheme (2)  

 

Lay-up scheme (3) 

 

Lay-up scheme (4) 

Fig. 1 Different lay-up schemes considered for the sandwich beams 

•  

 
Configuration (1) 

 
Configuration (2) 

 
Configuration (3) 

Fig. 2. Different configurations for the placement of the viscoelastic 

layers along the beam's longitudinal axis 
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Therefore, the theory of infinitesimal strains is typically 

employed in the analysis of such materials. One of the most 

widely used and general approaches for modeling linear 

viscoelastic materials is the Boltzmann superposition 

principle, originally introduced by Ludwig Boltzmann 

Lakes [2]. The Boltzmann Superposition Principle asserts 

that the total response of a system is equal to the sum of the 

individual responses caused by each component acting 

independently. To predict the stress history in viscoelastic 

materials, it is assumed that a specific strain is applied to 

the material. Relaxation and recovery experiments are 

commonly conducted to verify the linearity of this 

principle, ensuring that the material's response adheres to 

the principle under the applied conditions. The time-

dependent relaxation stress is expressed as: 

𝜎0 = 𝜀0𝐸(𝑡) (1) 

where 𝜀0 represents the initial strain, and 𝐸(𝑡) is the 

relaxation modulus. Based on the Boltzmann 

Superposition Principle, an arbitrary strain history can be 

represented as a combination of two sequential unit step 

strains: 
𝜀(𝑡) = 𝜀0[𝐻(𝑡) − 𝐻(𝑡 − 𝑡1)] (2) 

where 𝐻(𝑡) denotes the Heaviside step function. Thus, 

as described in Fig. 3, the resulting stress is: 
𝜎(𝑡) = 𝜀0[𝐸(𝑡) − 𝐸(𝑡 − 𝑡1)] (3) 

 

 
Fig. 3. (a) Application of the Boltzmann Superposition Principle to 

generate a strain pulse, (b) Calculation of relaxation stress in response 

to a strain pulse using the Boltzmann Superposition Principle 

 

The stress resulting from the delayed strain 𝜀0𝐻(𝑡 − 𝑡1) 

is expressed as 𝜀0𝐸(𝑡 − 𝑡1), similar  to the stress 𝜀0𝐸(𝑡), 

generated by the preceding strain step 𝜀0𝐻(𝑡). This 

relationship holds under the assumption that the material 

properties remain constant over time. Depending on the 

material's viscoelastic characteristics, the stress may 

diminish to zero or recover as time 𝑡 progresses Lakes [2]. 

The strain history 𝜀(𝑡) is defined as a function of time 𝑡, as 

depicted in Fig. 4. It is assumed that the strain remains zero 

before 𝑡 = 0. A specific segment of this strain history, 

ranging from 𝑡 − 𝜏 to 𝑡 − 𝜏 + ∆𝜏 (where 𝜏 is a time 

variable, analogous to the constant 𝑡1 in the earlier 

equations), is illustrated in Fig. 4. This segment of the 

strain history can be mathematically represented as: 
𝜀(𝑡) = 𝜀(𝜏)[𝐻(𝑡 − 𝜏) − 𝐻(𝑡 − 𝜏 + ∆𝜏)] (4) 

The equation above effectively describes a strain pulse. 

Using Eq. (3), the variation in stress within the 

viscoelastic material resulting from the strain pulse history 

can be formulated as: 
𝑑𝜎(𝑡) = 𝜀(𝜏)[𝐸(𝑡 − 𝜏) − 𝐸(𝑡 − 𝜏 + ∆𝜏)] (5) 

On the other hand, we have: 
𝑑𝐸(𝑡 − 𝜏)

𝑑𝜏
= lim

∆𝑡→0

𝐸(𝑡 − 𝜏 + ∆𝜏) − 𝐸(𝑡 − 𝜏)

∆𝜏
 (6) 

Thus, the stress increment can be written as: 

𝑑𝜎(𝑡) = −𝜀(𝑡)
𝑑𝐸(𝑡 − 𝜏)

𝑑𝜏
 (7) 

The entire strain history can be broken down into 

discrete strain pulses. The stress at any given time 𝑡 is 

determined by summing the stress contributions from all 

preceding pulses. Importantly, only the effects of strain 

pulses that occur before the present time 𝑡 are included in 

the computation. Contributions from potential future strain 

pulses are not accounted for, ensuring causality in the 

stress-strain relationship. 

 
Fig. 4. Decomposition of the strain history into a series of strain 

pulses 

If the width of the strain pulses, denoted as ∆𝜏 

approaches an infinitesimally small value, the summation 

converges to an integral, yielding the following expression 

for stress: 

𝜎(𝑡) = −∫ 𝜀(𝜏)
𝑑𝐸(𝑡 − 𝜏)

𝑑𝜏

𝑡

0

𝑑𝜏 + 𝐸(0)𝜀(𝑡) (8) 

The second term in this equation arises due to the 

following rationale: After the strain pulse or a series of 
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strain pulses, the strain often returns to zero. However, for 

an arbitrary strain history, the final strain, 𝜀(𝑡), at time 𝑡 is 

generally nonzero. The stress increment associated with the 

final strain is given by 𝐸(0)𝜀(𝑡), as there is insufficient 

time for stress relaxation to occur in this scenario Lakes 

[2]. To derive the final form of Boltzmann's superposition 

principle, integration by parts is applied. In this 

formulation, 𝑡 represents time, and 𝜏 represents the time 

variable for integration: 

𝜎(𝑡) = ∫ 𝐸(𝑡 − 𝜏)
𝑑𝜀(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

 (9) 

If the roles of stress and strain in the preceding 

discussions are interchanged, the complementary 

relationship below is obtained: 

𝜀(𝑡) = ∫ 𝐽𝐸(𝑡 − 𝜏)
𝑡

0

𝑑𝜎(𝜏)

𝑑𝜏
𝑑𝜏 (10) 

Consequently, if the response of a viscoelastic material 

to a unit step stress or strain is experimentally measured, 

the material's behavior under any arbitrary load history can 

be computed.  

The effect of temperature θ on the behavior of a 

viscoelastic material can be explained by using the concept 

of reduced time. In this case, the stress-strain relation is 

rewritten as: 

𝜎(𝑡) = 𝐸0(𝜃)𝛾 − ∫ 𝐸̇(𝜉(𝑠))𝜀(𝑡 − 𝑠)𝑑𝑠
𝑡

0

 (11) 

where 𝐸̇(𝜉) =
𝑑𝐸

𝑑𝜉
. In addition, 𝜉(𝑡) is the reduced time 

defined as: 

𝜉(𝑡) = ∫
𝑑𝑠

𝛼(𝜃(𝑠))

𝑡

0

 (12) 

In the above equation, 𝛼(𝜃(𝑠)) is time transmission 

function defined as: 

log(𝛼) = −
𝐶1(𝜃 − 𝜃0)

𝐶2 + (𝜃 − 𝜃0)
 (13) 

where 𝜃0 is the reference temperature at which the 

viscoelastic material response is measured. 𝐶1 and 𝐶2 are 

the calibration constants measured at this temperature. 

The previous paragraphs examined the constitutive 

relations in a one-dimensional state. For a viscoelastic 

material in three dimensions, the constitutive relationship 

can be expressed in the following form: 

𝜎𝑖𝑗(𝑡) = ∫ 𝐶𝑖𝑗𝑘𝑙(𝑡 − 𝜏)
𝑑𝜀𝑘𝑙(𝜏)

𝑑𝜏
𝑑𝜏

𝑡

0

 (14) 

where 𝐶𝑖𝑗𝑘𝑙  denotes elastic constants of a viscoelastic 

material. The above equation can be rewritten as the 

following matrix form: 
𝝈(𝑡) = 𝑪(𝑡)𝜺(𝑡) (15) 

2.3. Finite element modeling 

The finite element model employed to analyze the 

viscoelastic sandwich beam utilizes an 8-node continuum 

solid element. Each node has three degrees of freedom 

corresponding to translations along the global coordinate 

axes of 𝑥1, 𝑥2, and 𝑥3. The vector of displacement 

components 𝒖 = [𝑢 𝑣 𝑤]𝑇 may be written in terms of 

the nodal variables vectors 𝒖𝑢
𝑒  as follows: 

𝑢 = 𝑁𝑢𝑢𝑢𝑢
𝑒  (16) 

where 
𝒖𝑢

𝑒 = {𝑢1 𝑢2 ⋯ 𝑢8 ⋮ 
𝑣1 𝑣2 ⋯ 𝑣8 ⋮ 
𝑤1 𝑤2 ⋯ 𝑤8}𝑇  

In Eq. (16), 𝑵𝑢𝑢 denotes displacements Lagrange 

interpolation matrix. For brevity, the expression for 𝑵𝑢𝑢 is 

not included here.  

The Strain components at any point within the 

viscoelastic beam can be expressed in the following matrix 

form: 
𝜺 = 𝑳𝑢𝑢𝒖 (17) 

where  

𝑳𝑢𝑢 =

[
 
 
 
 
 
𝜕/𝜕𝑥 0 0

0 𝜕/𝜕𝑦 0
0 0 𝜕/𝜕𝑧
0 𝜕/𝜕𝑧 𝜕/𝜕𝑦

𝜕/𝜕𝑧 0 𝜕/𝜕𝑥
𝜕/𝜕𝑦 𝜕/𝜕𝑥 0 ]

 
 
 
 
 

 

𝜺 = [𝜀11 𝜀22 𝜀33 2𝜀23 2𝜀13 2𝜀12]
𝑇  

Given that the displacement components of the 

sandwich beam with viscoelastic layers are small, the 

linear strain-displacement relationships are utilized in Eq. 

(6). For a 8-node continum finite element with three 

degrees of freedom per node, and by using Eq. (16), strain 

vector may be expressed as follows: 
𝜺 = 𝑳𝑢𝑢𝒖 = 𝑳𝑢𝑢𝑵𝑢𝑢𝒖𝑢

𝒆 = 𝑩𝒖𝑢
𝒆  (18) 

where 𝑩 denotes strain interpolation matrix. 

The Hamilton's principle is used to derive governing 

equations of the viscoelastic sandwich beam. According to 

this principle, for a viscoelastic medium with volume 𝛺 

and regular boundary surface 𝛤, The following relationship 

applies: 

𝛿 [∫ (𝑈0 − 𝑇𝑘)𝑑𝑡
𝑡

0

] = 0 (19) 

where 

𝑈0 =
1

2
∫ 𝜺𝑻𝝈𝑑𝛺 − ∫ 𝒖𝑇𝑭𝑆𝑑𝛤 − ∫ 𝒖𝑇𝑭𝑉𝑑𝛺

𝛺𝛤𝛺

 (20) 

𝑇𝑘 =
1

2
∫𝜌

𝜕𝒖𝑇

𝜕𝑡
𝑉

𝜕𝒖

𝜕𝑡
𝑑𝑉, (21) 

and 𝜌 is the density. In addition, 𝑭𝑆 and 𝑭𝑽 are surface 

force vector, respectively. Substituting Eqs. (15), (16), and 

(18) into Eq. (19), and assembling the element equations 

result in the following general equation: 
𝑴𝒒̈(𝑡) + 𝑲(𝑡)𝒒(𝑡) = 𝑭(𝑡) (22) 

The matrices and vectors in the above equation include 

the stiffness matrix 𝑲(𝑡) = ∫ 𝑩𝑇𝑪𝐁𝑑𝛺
𝛺

, mass matrix 𝑴 =

∫ 𝜌𝐍𝑢𝑢
𝑇 𝑵𝑢𝑢𝑑𝛺

𝛺
, and loads vector 𝑭(𝑡) = ∫ 𝑵𝑢𝑢

𝑇𝑭𝑽𝑑𝛺 +
𝛺

∫ 𝑵𝑢𝑢
𝑇𝑭𝑺𝑑𝛤

𝛤
.  



83 Journal of Civil Engineering Researchers 

2025-vol7(4)-p 78-87 

 

3.  Numerical Results and Discussion 

In this section, numerical examples are presented to 

investigate the influence of viscoelastic layers' position on 

the natural frequency, damping capability, and creep 

deformations of sandwich beams. Firstly, the finite element 

model is validated by comparing its results with 

experimental data. Then, the optimal placement of 

viscoelastic layers within sandwich beams is determined.  

All sandwich beams examined in this section have a 

length of 1000 mm, a width of 100 mm, and their overall 

thickness is 12.76 mm. The thickness of each glass layer is 

4 mm, while the thickness of each viscoelastic layer is 0.38 

mm. The layers are assumed to be perfectly bonded, 

ensuring no slippage at the interfaces. The mechanical 

properties of the glass and the viscoelastic material (i.e., 

PVB) are summarized in Table 1. Thermal effects are 

neglected, and the analyses are performed at the constant 

temperature of 20°C. 

All numerical simulations are carried out using 

ABAQUS software. The eight-node brick element 

(C3D8R) available in the library of this software was 

employed for modeling the glass and PVB layers. Static 

analysis was adopted for simulating the creep problems. 

Dynamic implicit analysis was used for predicting the 

transient creep responses. Free vibration tests were also 

carried out by employing the eigenvalue solver available in 

the ABAQUS software. 
Table 1 

Mechanical Properties of Glass and PVB [6] 

Material 

Elastic 

Modulus 
(MPa) 

Poisson's 

Ratio 

Density 

(kg/m³) 
C1 C2 

Glass 72000 0.22 2,500 12.6010 74.76 

PVB 1240.3 0.49 1100 12.6010 74.76 
 

 

3.1. Validating example 

Free vibration analysis of a sandwich beam with 

viscoelastic layers is studied in this subsection. The 

sandwich beam under consideration has clamped boundary 

conditions at both ends.. Lamination configuration of the 

sandwich beam is lay-up 1 (see Fig. 1). The viscoelastic 

layers are located all over the length of the beam. This 

analysis aims to assess and compare the accuracy of the 3D 

finite element simulations. Experimental data from Pelayo 

et al. [6], who previously studied this beam, are employed 

to validate the numerical results.  

Table 2 summarizes the first four natural frequencies of 

the viscoelastic sandwich beam, calculated using the finite 

element model. The numerical results are compared with 

the experimental data reported by Pelayo et al. [6]. 
Table 2 

Natural Frequencies (Hz) of the clamped-clamped sandwich beam with 

lay-up scheme no. 1 

Vibrating Mode Experimental Present 

1 36.14 36.47 

2 98.28 97.40 

3 188.94 188.22 

4 306.13 303.35 

 
Table 2 demonstrates that the numerical results from the 

finite element model align exceptionally well with the 

experimental data, showing a maximum percentage 

discrepancy of just 0.9%.  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. Effect of lay-up scheme on the long-term deflection of 

sandwich beams: (a) clamped-clamped, (b) simply support, (c) 

clamped-free 
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Table 4 

Effect of lamination configuration on the natural frequencies (Hz) of the sandwich beams 

Boundary condition Mode no. 
Laminaion configuration 

Lay-up 1 Lay-up 2 Lay-up 3 Lay-up 4 

Fixed-Fixed 

1 36.472 52.195 51.463 40.587 

2 97.402 142.44 141.72 110.13 

3 188.22 277.84 277.89 214.49 

4 303.35 312.00 372.07 351.18 

Simply support 

1 18.09 24.02 22.22 18.95 

2 64.43 92.09 88.99 70.99 

3 139.96 204.85 200.67 157.22 

4 245.21 257.67 257.67 257.67 

Clamped-free 

1 7.2641 9.1232 7.9996 7.4169 

2 37.688 52.293 50.076 40.871 

3 59.945 59.945 59.950 59.946 

4 99.072 143.06 140.19 110.49 
 

3.2. Effect of PVB stacking sequence on natural 

frequency, creep deformations, and damping capability  

This section investigates how the through-thickness 

positioning of viscoelastic layers affects the long-term 

creep deformations, natural frequencies, and damping 

capability of the sandwich beams. In the examined 

sandwich beams of this section, it is assumed that the 

viscoelastic layers are located all over the length of the 

structure (configuration 4). 

3.2.1. Creep deformations.  

The creep deformations of the beam under a uniform 

load of 2000 𝑁/𝑚² were calculated for four different lay-

up schemes shown in Fig. 1 over a ten-day period. 

Variations of maximum deflection with respect to time are 

shown in Figs. 5a, 5b, and 5c. Moreover, the percentage 

increase in the beam’s creep deformation during this time 

frame is summarized in Table 3.The analysis reveals that, 

irrespective of the boundary conditions, the third lay-up 

scheme leads to the minimum rate of time-dependent 

deflections. For instance, in a cantilever sandwich beam, 

the percentage increase in deformations for lay-up scheme 

1, through 4 are 5.99%, 4.87%, 0.59%, and 5.41%, 

respectively. The corresponding increases in deformation 

for other boundary conditions are summarized in Table 3. 
Table 3 

Percentage increase (%) in the long-term deflection of the sandwich 

beam for different lay-up schemes 

Boundary 

Conditions 
Lay-up 1 Lay-up 2 Lay-up 3 Lay-up 4 

Clamped-
Free 

5.99% 4.87% 0.59% 5.41% 

Clamped-

Clamped 
33.48% 24.70% 0.59% 29.36% 

Simply 

supported 
24.92% 19.13% 0.59% 25.59% 

3.2.2. Natural frequencies.  

Table 4 shows the first four natural frequencies of 

sandwich beams for different lay-up schemes and various 

boundary conditions. It is seen that the natural frequencies 

are very sensitive with respect to the lay-up scheme chosen 

for the sandwich beam. Regardless of the type of boundary 

conditions, lay-up scheme 2 leads to the highest frequency, 

and lay-up scheme 1 leads to the lowest frequency among 

other lamination configurations.  

As observed in Figs. 8-10, the second viscoelastic layer 

configuration provides superior damping performance 

under different boundary conditions, leading to faster 

dissipation of beam vibrations. For example, for a 

sandwich beam with a clamped-free boundary condition, 

vibrations are reduced by more than 99% within 3.96 

seconds when using the second configuration. In contrast, 

the corresponding reduction times for the first, third, and 

fourth lamination configurations are 4.29, 4.32, and 4.68 

seconds, respectively. The results for other boundary 

conditions are summarized in Table 5. 
Table 5.  

Effect of different lamination configurations on the vibration decay time 

Boundary 

Conditions 
Lay-up 1 Lay-up 2 Lay-up 3 Lay-up 4 

Clamped-Free 4.29 s 3.96 s 4.32 s 4.68 s 

Clamped-

Clamped 
2.67 s 2.12 s 2.78 s 2.74 s 

Simply 

supported 
2.15 s 1.70 s 2.56 s 2.39 s 

3.2.3. Damping capability  

The influence  of the lay-up configuration on the 

reduction of dynamic vibrations and the damping behavior 

of sandwich beams is investigated in this subsection. For 

the four distinct lay-up schemes shown in Fig. 1, the time 

history of the beams' maximum deflection is estimated 

using the finite element simulation. It is worth  noting that 

the analyzed sandwich beams were initially subjected to a 

predefined initial deformation and subsequently released. 

The analyzed sandwich beams are assumed to have three 

different boundary conditions: clamped-free, simply 

supported, and clamped-clamped. The deflection time-

history of sandwich beams with different boundary 

conditions are shown in Figs. 6a, 6b, and 6c. 



85 Journal of Civil Engineering Researchers 

2025-vol7(4)-p 78-87 
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(b) 

 
(c) 

Fig. 6. Effect of lay-up configuration on the time-history response of 

sandwich beams: (a) clamped-clamped, (b) simply support, (c) 

clamped-free 

3.3. Effect of axial location of PVB layers on creep 

deformations and damping capability  

In the previous section, the optimal placement of the 

viscoelastic layers across the beam’s thickness was 

investigated. The results indicated that, regardless of the 

boundary conditions, placing the viscoelastic layers at the 

central part of the beam's thickness (i.e., lay-up scheme 2) 

provides the highest damping efficiency. In this section, the 

effects of axial location of PVB layers on creep 

deformations and damping capabilities are investigated. 

Based on the results of Section 3.2, the lamination 

configuration of all examined sandwich beams of this 

section is lay-up no. 2 (see Fig. 1).  

3.3.1. Creep deformations 

For three different configurations of PVB layer 

placement, the creep deformation of the beam under a 

uniform distributed load of 2000 𝑁/𝑚² was evaluated 

after ten days. The results are illustrated in Figs. 7a, 7b, and 

7c. Moreover, the percentage increase in the beam’s creep 

deformation during this time frame is summarized in Table 

6. 

 
(a) 

 
(b) 

 
(c) 

Fig. 7 Effect of the longitudinal position of the PVB layer on the 

maximum creep deformation of sandwich beam: (a) simply support, 

(b) clamped-clamped, (c) clamped-free 
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Table 6.  

Percentage increase (%) in long-term deflection of the sandwich beam 

for different longitudinal positions of the PVB layers 

Boundary 
Conditions 

Configuration 1  Configuration 2 Configuration 3 

Clamped-Free 25.04 14.60 4.94 

Clamped-

Clamped 
63.86 36.52 63.86 

Simply support 33.17 66.86 33.17 

Table 6 shows that for simply supported and clamped-

clamped sandwich beams, placing the PVB layer within the 

middle third of the beam's length minimizes the rate of 

time-dependent creep deflections.  In contrast, for 

clamped-free sandwich beams, the minimum rate of creep 

deformations occurs when the PVB layer is located in the 

last third of the beam. 

3.3.2. Damping capability 

For three different axial locations of the PVB layers 

shown in Fig. 2, the time-history of the maximum 

deflection of the beams are estimated using the finite 

element simulation. The analyzed sandwich beams were 

subjected to an initial deformation, with various boundary 

conditions assumed, including clamped-free, simply 

supported, and clamped-clamped, are assumed for them. 

Fig. 8a shows the deflection time history of sandwich 

beams with clamped-free end conditions. As shown in 

Figure 19, placing the PVB layer near the free end of the 

cantilever beam leads to a faster attenuation of transverse 

vibrations compared to other configurations. The beam 

vibration amplitude are reduced by more than 99% after 

5.82, 5.74, and 5.71 seconds for configurations 1, 2, and 3, 

respectively. Although the differences in decay times are 

minor, the results highlight that the damping performance 

is sensitive to the longitudinal position of the viscoelastic 

interlayer, with improved performance observed when the 

layer is placed closer to the free end. 

Fig. 8b illustrates the dynamic response of a clamped-

clamped sandwich beam under different longitudinal 

configurations of the PVB layer. Compared to the 

cantilever beams, the clamped-clamped sandwich beams 

show significantly faster vibration decay due to increased 

global stiffness. The vibrations are nearly damped out 

within 0.4 seconds in all cases. Although differences 

between the three configurations are minimal, the highest 

damping is achieved when the PVB layer is positioned in 

the middle third of the beam.  

Fig. 8c shows the deflection time history of a simply 

supported sandwich beam under different longitudinal 

configurations of the PVB layer. All configurations 

demonstrate rapid vibration decay, with displacements 

significantly reduced within approximately 2.5 seconds. 

Among the three configurations, configuration 3 (red 

curve) slightly outperforms the others in damping 

effectiveness, as it achieves smaller amplitudes sooner. 

Fig. 8c indicates that placing the PVB layer in the last third 

closest to the hinged support leads to the greatest damping. 

When the viscoelastic layer is located in the middle third 

of the beam, vibrations dissipate by more than 99% after 

2.14 seconds. For positions in the first or last thirds of the 

beam (positions 1 and 3), this value is 2.15 and 2.09 

seconds, respectively. This suggests that placing the PVB 

layer in the last third of the beam contributes to improved 

energy dissipation for simply supported beams. 

 
(a) 

 
(b) 

 
(c) 

Fig. 8 Effect of axial location of the PVB layer on the time-history 

response of sandwich beams: (a) clamped-free, (b) clamped-clamped, 

(c) simply support 

These results indicate that the viscoelastic layer's 

optimal longitudinal positioning strongly depends on the 

beam’s boundary conditions and correlates with the 

regions of maximum dynamic deformation. Proper 

placement of the PVB layer can significantly enhance the 
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damping capacity and reduce the duration of vibrational 

responses. 

4. Conclusion 

This study  examined the creep and dynamic behaviors 

of sandwich beams including viscoelastic layers using 

three-dimensional finite element modeling. Additionally, 

the study aimed to identify the optimal position of 

viscoelastic layers through the thickness and along the 

beam's length to maximize damping performance and 

minimize creep deformations. The accuracy of the finite 

element model was confirmed by comparing its results 

with experimental results available in the literature. The 

key findings of this research are summarized as follows: 

• The developed three-dimensional finite 

element model demonstrated high accuracy in 

predicting both the creep behavior and the free 

vibration of sandwich beams incorporating 

viscoelastic layers. 

• The inclusion of viscoelastic layers had a 

pronounced impact on the dynamic response of 

the sandwich beams, notably enhancing their 

damping capacity. 

• Despite improving damping performance 

under dynamic loads, the viscoelastic layers 

contributed to creep behavior, resulting in 

increased long-term deformations under 

sustained service loads. 

• Independent of the sandwich beam's boundary 

conditions, placing the viscoelastic layer near 

the neutral axis (i.e., at the mid-thickness) 

maximizes the damping effect.  

• Positioning viscoelastic layers far from the 

neutral axis of the beam (i.e., at the top and 

bottom of the host beam) minimizes long-term 

creep deformations, irrespective of the 

boundary conditions. 

• For clamped-free sandwich beams, placing the 

viscoelastic layer in the last third of the beam’s 

length (near the free end) provides the highest 

damping performance. For simply supported 

beams, placing the PVB layer in the last third 

closest to the hinged support leads to improved 

energy dissipation. In contrast, for the 

clamped-clamped boundary condition, the 

optimal damping is achieved when the 

viscoelastic layer is positioned in the central 

third of the beam. 
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