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ABSTRACT

Until now, various mathematical models have been proposed to characterize the behavior of
viscoelastic materials and facilitate their implementation in finite element software.
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However, it remains unclear which configuration of the viscoelastic layer along the thickness
and length of the beam yields the lowest creep deflection and highest damping effect under
applied forces. To fill this literature gap, efforts are undertaken in this study to identify the

optimal placement of the viscoelastic layers in the sandwich beam. To reach this aim, the
creep and dynamic behaviors of sandwich beams with different boundary conditions and
various configurations of the viscoelastic layer along the thickness and length were
investigated using a finite element model. The obtained results indicate that the damping
capability and creep deformations of the sandwich beam are strongly affected by the position

of the viscoelastic layers.
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1. Introduction

In recent years, the application of viscoelastic materials
has increased significantly. The growing interest in these
materials arises from their ability to dissipate significant
amounts of energy through shear deformation. These
materials are predominantly utilized as energy dampers.
On the other hand, sandwich structures are widely utilized
in industries such as construction, bridge building, and
shipbuilding, owing to their high bending stiffness-to-
weight ratio and the adaptability to modify fundamental
structural parameters to meet specific design requirements.
Sandwich beams with viscoelastic cores, known for their
effective damping properties under dynamic loads, are

" Corresponding author. Tel.: +980000000000; e-mail: m.lezgy@hsu.ac.ir.

among the most widely used components in industrial
structures.

Banks et al. [1] provided a comprehensive overview of
elastic and viscoelastic materials, aiming to enhance the
understanding of their properties and applications. Lakes
[2] conducted experimental studies to explore the
properties of viscoelastic materials across a range of
substances, including polymers, metals, piezoelectric
materials, damping alloys, composites, and biological
materials. Galuppi and Royer-Carfagni [3] analyzed the
time-dependent behavior of a sandwich beam with
viscoelastic core. The analyzed beam comprises two elastic
layers at the top and bottom, with a viscoelastic core
sandwiched between them. Galuppi and Roier-Carfagni
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compared the results obtained from their analytical model
with those obtained from three-dimensional finite element
analysis. Kpeky et al. [4] investigated the vibration
behavior of sandwich structures featuring soft and flexible
cores. Given the substantial differences in the mechanical
properties between the core and the top and bottom layers
of sandwich structures, modeling these systems using
higher-order elements or three-dimensional elements is
more suitable. However, this approach increases the
number of degrees of freedom and extends the analysis
time. To mitigate this time-consuming process, Kpeky and
colleagues proposed a hexahedral solid-shell linear
element as an alternative.

Mohammadi and Nasirshoaibi [5] detailed the modeling
process for viscoelastic materials using ABAQUS
software. This reference emphasizes that the behavior of
viscoelastic materials can be effectively simulated by
precisely defining the storage and loss shear moduli. The
simulation results were then compared with experimental
data. Pelayo et al. [6] investigated the temperature- and
time-dependent behavior of polyvinylbutyral (PVB)
material, commonly used in the construction of sandwich
beams. This reference examines the mechanical behavior
of laminated glass elements in which PVB, a viscoelastic
material, is used as an interlayer. In this research, PVB
samples were subjected to dynamic tests using a dynamic
mechanical thermal analysis (DMTA) device across a
temperature range of -15°C to 50°C. Subsequently, master
curves at different temperatures were constructed using the
Williams-Landel-Ferry model, and the Young's modulus of
PVB was determined in both time and frequency domains.

Froli and Lani [7] investigated the adhesion, creep, and
stress relaxation behavior of laminated glass incorporating
a viscoelastic PVB interlayer. In this reference, glass
specimens were subjected to tensile loading at a 45-degree
angle relative to their longitudinal axis. A modified shear-
compression testing method was utilized to assess evaluate
the ultimate shear strength of the PVB interlayers. Various
specimens of this material were fabricated and
experimentally tested. Following the experimental
investigations, the viscoelastic properties of the material,
specifically shear behavior, creep, and stress relaxation,
were characterized and subsequently used in numerical
modeling. Ehrich et al. [8] proposed a new methodology
for examining the properties of encapsulated ethylene-
vinyl acetate (EVA) and PVB. The newly developed
method for characterizing encapsulated materials
demonstrated high effectiveness, cost-efficiency, and
practicality for laboratory-scale applications. Hana et al.
[9] conducted both experimental and numerical studies to
evaluate the mechanical properties of polymer interlayers
used in laminated glass manufacturing. These researchers
investigated the sensitivity of shear stiffness in two
commonly used polymers in glass panel construction—

PVB and EVA—to variations in time and temperature.
Hana et al. [10] investigated the four-point bending
behavior of glass panels with PVB interlayers using both
numerical and experimental approaches. The analyzed
glass panels were composed of glass sheets bonded by
polymer interlayers, which enabled the transfer of shear
stresses between the glass layers. Hana, EliaSova and
colleagues determined the time- and temperature-
dependent shear stiffness using a discrete Maxwell model,
with Prony series coefficients derived from the thermo-
dynamic analysis of the polymer interlayer.

Zemanova et al. [11] analyzed the modal characteristics
of multilayered glass beams. Given that in laminated glass,
rigid glass layers are bonded with soft interlayers whose
mechanical behavior is frequency and temperature-
dependent, the system exhibits viscoelastic characteristics.
In this reference, Zimanova et al. employed four distinct
approaches to address to solve the nonlinear eigenvalue
problem: complex eigenvalue computation based on the
Newton-Raphson method, the modal kinetic energy
method, the dynamic effective thickness method, and the
enhanced effective thickness method. Li et al. [12]
presented a state-space method for analyzing the dynamic
response of double-layer beams with a viscoelastic
interlayer. The considered double-layer system consists of
two parallel Euler-Bernoulli elastic beams connected by a
generalized viscoelastic interlayer. In this reference, a
novel state-space approach is developed by introducing
mode shape constants to address the coupling effects
induced by the viscoelastic interlayer. Schuster et al. [13]
investigated the linear viscoelastic behavior of polymeric
interlayers used in laminated glass. This study examined a
three-layer system consisting of rigid outer layers and a
soft acoustic PVB core, emphasizing the impact of
temperature and loading on the materials mechanical
properties. The experimental data analysis included
DMTA and creep testing under bending conditions. In this
reference, the results were compared with analytical
models developed using the generalized Maxwell model
and a simplified model that combined multiple rheological
models.

Based on the studies conducted so far, it can be
concluded that accurately predicting the dynamic behavior
of sandwich beams with viscoelastic layers using the finite
element method necessitates a precise determination of the
structural properties and constitutive relationships of
viscoelastic materials. Various methods are available to
define the characteristics of viscoelastic materials,
including the utilization of dynamic storage and loss
moduli, creep or relaxation test data, or directly specifying
of Prony series parameters. However, no comprehensive
study has been conducted to date to determine the optimal
placement of the viscoelastic layer. This research seeks to
determine the optimal positioning of viscoelastic layers
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along the thickness and length of the beam to maximize
damping performance.

2. Sandwich beam with viscoelastic layers
2.1. Geometry and mechanical properties

The considered sandwich beams of the present study are
prismatic, featuring a rectangular uniform cross-section of
width b, height h, and length L. These sandwich beams
comprising three glass layers and two viscoelastic layers
made of PVB material. The total thickness of glass layers
is 3hg, while the total thickness of PVB layers is 2hy,.
Laminated glass beams are widely used in diverse
structural applications. They form the primary support ribs
or secondary purlins for large overhead glazed roofs,
entrance canopies, and atria. They also serve as load-
bearing elements for glass floors, bridges, and stair
stringers/treads where transparency is desired for visual
connection or light penetration. Since the failure of glass
structures is rather brittle, PVB laminates are incorporated
as safety-critical enhancements. The PVB layers provide
essential post-breakage integrity. If a laminated glass beam
is impacted (e.g., by hail, falling debris), the PVB holds
shattered glass fragments in place, preventing collapse and
protecting people below. Additionally, PVB laminates
enhance vibration damping.

To identify the optimal position of the viscoelastic
layers along the beam's thickness, four distinct lay-up
schemes are assumed for the sandwich beams. These
considered lay-up schemes are illustrated in Fig. 1.
Notably, in all these lay-up schemes, the total cross-
sectional area of the viscoelastic layers remains identical.

In this paper, the optimal placement of viscoelastic
layers along the beam's longitudinal axis is also
investigated. For this purpose, various configurations for
positioning the PVB layer along the beam’s length are
considered. As illustrated in Fig. 2, the three considered
axial configurations for the placement of the PVB layer
along the beam length are:

e  The first third of the beam,
e  The middle third of the beam,

The last third of the beam.

2.2. Constitutive relations for viscoelastic materials

This section focuses on the constitutive equations of
linear viscoelastic materials and their corresponding linear
constitutive relations. Linear viscoelasticity is generally
applicable only to small deformations or to materials that
exhibit linear mechanical behavior.

Glass

Glass

Glass

Lay-up scheme (1)

Glass 1.5hg
PVB hy
PVB 1‘\1

Glass 1.5hg

Lay-up scheme (2)

7 iy
Glass hg

Glass he

Glass hg

. - +hy

Lay-up scheme (3)

Glass Re

= hy
. _xhy

Glass he

Glass h

Lay-up scheme (4)

Fig. 1 Different lay-up schemes considered for the sandwich beams

Configuration (1)

Configuration (2)

Configuration (3)
Fig. 2. Different configurations for the placement of the viscoelastic
layers along the beam's longitudinal axis
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Therefore, the theory of infinitesimal strains is typically
employed in the analysis of such materials. One of the most
widely used and general approaches for modeling linear
viscoelastic materials is the Boltzmann superposition
principle, originally introduced by Ludwig Boltzmann
Lakes [2]. The Boltzmann Superposition Principle asserts
that the total response of a system is equal to the sum of the
individual responses caused by each component acting
independently. To predict the stress history in viscoelastic
materials, it is assumed that a specific strain is applied to
the material. Relaxation and recovery experiments are
commonly conducted to verify the linearity of this
principle, ensuring that the material's response adheres to
the principle under the applied conditions. The time-
dependent relaxation stress is expressed as:

gy = &E(t) (1
where €, represents the initial strain, and E(t) is the
relaxation modulus. Based on the Boltzmann
Superposition Principle, an arbitrary strain history can be
represented as a combination of two sequential unit step
strains:
(t) = g[H(t) — H(t — t1)] ©))
where H (t) denotes the Heaviside step function. Thus,
as described in Fig. 3, the resulting stress is:
o(t) = g[E@®) — E(t — t,)] 3

e A

£ +
T > L

e A

relaxation

>t

Fig. 3. (a) Application of the Boltzmann Superposition Principle to
generate a strain pulse, (b) Calculation of relaxation stress in response
to a strain pulse using the Boltzmann Superposition Principle

The stress resulting from the delayed strain g H (t — t;)
is expressed as gyE (t — t;), similar to the stress g,E (t),
generated by the preceding strain step &£yH(t). This
relationship holds under the assumption that the material
properties remain constant over time. Depending on the
material's viscoelastic characteristics, the stress may
diminish to zero or recover as time t progresses Lakes [2].
The strain history £(t) is defined as a function of time ¢, as
depicted in Fig. 4. It is assumed that the strain remains zero
before t = 0. A specific segment of this strain history,
ranging from t —7 to t —7+ At (where T is a time
variable, analogous to the constant t; in the earlier
equations), is illustrated in Fig. 4. This segment of the
strain history can be mathematically represented as:

e®) =e@[H({t—1)—H(t —7+A1)] @

The equation above effectively describes a strain pulse.

Using Eq. (3), the variation in stress within the
viscoelastic material resulting from the strain pulse history
can be formulated as:

do(t) =e(@)[E(t — 1) —E(t — 7+ A1)] 5)
On the other hand, we have:

dE(t — 1) E(t—t+4+A1)—E(t—71)
dt At—0 At
Thus, the stress increment can be written as:
dE (t 7)
do(t) = —e(t) ———— @

The entire strain history can be broken down into
discrete strain pulses. The stress at any given time t is
determined by summing the stress contributions from all
preceding pulses. Importantly, only the effects of strain
pulses that occur before the present time t are included in
the computation. Contributions from potential future strain
pulses are not accounted for, ensuring causality in the
stress-strain relationship.

AE

=]
/.. -
i

/A

=T t=T+AT

Fig. 4. Decomposition of the strain history into a series of strain
pulses
If the width of the strain pulses, denoted as At
approaches an infinitesimally small value, the summation
converges to an integral, yielding the following expression
for stress:

o(t) = f @D 4y B (®)

The second term in thls equation arises due to the
following rationale: After the strain pulse or a series of

2025-vol7(4)-p 78-87



82 Journal of Civil Engineering Researchers

strain pulses, the strain often returns to zero. However, for
an arbitrary strain history, the final strain, €(t), at time t is
generally nonzero. The stress increment associated with the
final strain is given by E(0)e(t), as there is insufficient
time for stress relaxation to occur in this scenario Lakes
[2]. To derive the final form of Boltzmann's superposition
principle, integration by parts is applied. In this
formulation, t represents time, and T represents the time
variable for integration:
t de (1)
a(t) =J; E(t—r)?d‘r 9)

If the roles of stress and strain in the preceding
discussions are interchanged, the complementary
relationship below is obtained:

t d
e = [ Jet -2
0

1
e dt (10)

Consequently, if the response of a viscoelastic material
to a unit step stress or strain is experimentally measured,
the material's behavior under any arbitrary load history can
be computed.

The effect of temperature 6 on the behavior of a
viscoelastic material can be explained by using the concept
of reduced time. In this case, the stress-strain relation is
rewritten as:

0@ = O - [ E(E))e(t - s)ds (1)

0
where E(§) = Z—E. In addition, é(t) is the reduced time
defined as: d
t J f_ds 12
0= ~hmy (12)
In the above equation, a(6(s)) is time transmission
function defined as:
606y )
Gy + (6 —6o)
where 6, is the reference temperature at which the
viscoelastic material response is measured. C; and C, are
the calibration constants measured at this temperature.
The previous paragraphs examined the constitutive
relations in a one-dimensional state. For a viscoelastic
material in three dimensions, the constitutive relationship
can be expressed in the following form:

¢ deg (1)
750 = [ Cyute -1 = ar (14

where Cjj,; denotes elastic constants of a viscoelastic
material. The above equation can be rewritten as the
following matrix form:

o(t) = C(H)e(D) (15)

log(a) =

2.3. Finite element modeling

The finite element model employed to analyze the
viscoelastic sandwich beam utilizes an 8-node continuum
solid element. Each node has three degrees of freedom
corresponding to translations along the global coordinate

axes of x;, x,, and x3. The vector of displacement
components u = [u v w]T may be written in terms of
the nodal variables vectors u, as follows:

U = Ny us (16)
where
u;, ={w u; - ug

1% v, e Vg :

wy wy e wg)T

In Eq. (16), N,, denotes displacements Lagrange
interpolation matrix. For brevity, the expression for N, is
not included here.

The Strain components at any point within the
viscoelastic beam can be expressed in the following matrix
form:

g=L,u a7
where

[8 /0x 0 0 1
| 0 d/0y 0 |
L = | o 0 9/oz|
u 0 9/oz 0d/dy
la /0z 0 9/ ax}
a/dy d/ox 0
e=[e11 €2 €33 263 263 2¢&,]"

Given that the displacement components of the
sandwich beam with viscoelastic layers are small, the
linear strain-displacement relationships are utilized in Eq.
(6). For a 8-node continum finite element with three
degrees of freedom per node, and by using Eq. (16), strain
vector may be expressed as follows:

€= Ly u = Ly Nyui = Bug (18)
where B denotes strain interpolation matrix.

The Hamilton's principle is used to derive governing
equations of the viscoelastic sandwich beam. According to
this principle, for a viscoelastic medium with volume 2
and regular boundary surface I', The following relationship
applies:

t
5 U Uy — Tk)dt] =0 (19)
0
where
1
Uy == f elodn — f u'Fgdll' — f u'F,dn (20)
2 0 r 0n
_ 1 ou’ audV
k=21 P ac @n
14

and p is the density. In addition, Fg and Fy are surface
force vector, respectively. Substituting Egs. (15), (16), and
(18) into Eq. (19), and assembling the element equations
result in the following general equation:
Mg(t) + K(t)q(t) = F(t) (22)
The matrices and vectors in the above equation include
the stiffness matrix K (t) = [ o BT CBd, mass matrix M =

J,, PNLuNo,,d2, and loads vector F(t) = [ Ny,,' FydQ +
SNy, Fgdl.
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3. Numerical Results and Discussion

In this section, numerical examples are presented to
investigate the influence of viscoelastic layers' position on
the natural frequency, damping capability, and creep
deformations of sandwich beams. Firstly, the finite element
model is validated by comparing its results with
experimental data. Then, the optimal placement of
viscoelastic layers within sandwich beams is determined.

All sandwich beams examined in this section have a
length of 1000 mm, a width of 100 mm, and their overall
thickness is 12.76 mm. The thickness of each glass layer is
4 mm, while the thickness of each viscoelastic layer is 0.38
mm. The layers are assumed to be perfectly bonded,
ensuring no slippage at the interfaces. The mechanical
properties of the glass and the viscoelastic material (i.e.,
PVB) are summarized in Table 1. Thermal effects are
neglected, and the analyses are performed at the constant
temperature of 20°C.

All numerical simulations are carried out using
ABAQUS software. The -eight-node brick element
(C3D8R) available in the library of this software was
employed for modeling the glass and PVB layers. Static
analysis was adopted for simulating the creep problems.
Dynamic implicit analysis was used for predicting the
transient creep responses. Free vibration tests were also
carried out by employing the eigenvalue solver available in
the ABAQUS software.

Table 1
Mechanical Properties of Glass and PVB [6]
Elastic . . .
Material Modulus P(ﬁzst?: S ]()ker;;?)/ C, C,
(MPa) &
Glass 72000 0.22 2,500 12.6010  74.76
PVB 1240.3 0.49 1100 12.6010  74.76

3.1. Validating example

Free vibration analysis of a sandwich beam with
viscoelastic layers is studied in this subsection. The
sandwich beam under consideration has clamped boundary
conditions at both ends.. Lamination configuration of the
sandwich beam is lay-up 1 (see Fig. 1). The viscoelastic
layers are located all over the length of the beam. This
analysis aims to assess and compare the accuracy of the 3D
finite element simulations. Experimental data from Pelayo
et al. [6], who previously studied this beam, are employed
to validate the numerical results.

Table 2 summarizes the first four natural frequencies of
the viscoelastic sandwich beam, calculated using the finite
element model. The numerical results are compared with

the experimental data reported by Pelayo et al. [6].
Table 2

Natural Frequencies (Hz) of the clamped-clamped sandwich beam with

lay-up scheme no. 1

Vibrating Mode Experimental Present
1 36.14 36.47
2 98.28 97.40
3 188.94 188.22
4 306.13 303.35

Table 2 demonstrates that the numerical results from the
finite element model align exceptionally well with the
experimental data, showing a maximum percentage
discrepancy of just 0.9%.

Time (day)
0 2 4 6 8 10
0 . L L
.0.2 - Lay-up 1 ----lay-up2
—_ — —Llay-up3 --= Lay-up4
E -0.4 -
£
c
]
=
2
‘G
a
(a)
Time (day)
0 2 4 6 8 10
0 1 1 1 1
Lay-upl ----lay-up2
05 y-up y-up
€
£ 1 — —lay-up3 --- Lay-up4
c
.8
=
o
o
‘G
[a]
-2.5
(b)
Time (da
0 2 4 ( v)6 8 10
15 ! ! L !
Lay-upl ---- Lay-up2
220 4
€ — —lay-up3 -:- lay-up4
€ 25 -]
=
£ -30 -
3
2 .35
\‘_-—t——_l_-_._a_‘___, - N - - _- e . R
40 +-—————_—_—_—_—_—_—_——_——_—_——_——_————— ]
-45

(©)
Fig. 5. Effect of lay-up scheme on the long-term deflection of
sandwich beams: (a) clamped-clamped, (b) simply support, (c)
clamped-free
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Table 4

Effect of lamination configuration on the natural frequencies (Hz) of the sandwich beams

Laminaion configuration

Boundary condition Mode no. Tonal Tl ovetnd and

1 36.472 52.195 51.463 40.587

Fixed-Fixed 2 97.402 142.44 141.72 110.13
3 188.22 277.84 277.89 214.49

4 303.35 312.00 372.07 351.18

1 18.09 24.02 2222 18.95

Simply support 2 64.43 92.09 88.99 70.99
3 139.96 204.85 200.67 157.22

4 245.21 257.67 257.67 257.67

1 7.2641 9.1232 7.9996 7.4169

Clamped-free 2 37.688 52.293 50.076 40.871
3 59.945 59.945 59.950 59.946

4 99.072 143.06 140.19 110.49

3.2. Effect of PVB stacking sequence on natural
frequency, creep deformations, and damping capability

This section investigates how the through-thickness
positioning of viscoelastic layers affects the long-term
creep deformations, natural frequencies, and damping
capability of the sandwich beams. In the examined
sandwich beams of this section, it is assumed that the
viscoelastic layers are located all over the length of the
structure (configuration 4).

3.2.1. Creep deformations.

The creep deformations of the beam under a uniform
load of 2000 N /m? were calculated for four different lay-
up schemes shown in Fig. 1 over a ten-day period.
Variations of maximum deflection with respect to time are
shown in Figs. 5a, 5b, and 5c. Moreover, the percentage
increase in the beam’s creep deformation during this time
frame is summarized in Table 3.The analysis reveals that,
irrespective of the boundary conditions, the third lay-up
scheme leads to the minimum rate of time-dependent
deflections. For instance, in a cantilever sandwich beam,
the percentage increase in deformations for lay-up scheme
1, through 4 are 5.99%, 4.87%, 0.59%, and 5.41%,
respectively. The corresponding increases in deformation

for other boundary conditions are summarized in Table 3.
Table 3

Percentage increase (%) in the long-term deflection of the sandwich
beam for different lay-up schemes

g;);;iirnys Lay-upl  Lay-up2  Lay-up3  Layup4
Cle;r;lg;ed- 5.99%, 4.87% 0.59% 5.41%
(g;‘;%z(g 33.48% 24.70% 0.59% 29.36%
Susggﬂz o 2492%  1913%  059%  25.59%

3.2.2. Natural frequencies.
Table 4 shows the first four natural frequencies of
sandwich beams for different lay-up schemes and various

boundary conditions. It is seen that the natural frequencies
are very sensitive with respect to the lay-up scheme chosen
for the sandwich beam. Regardless of the type of boundary
conditions, lay-up scheme 2 leads to the highest frequency,
and lay-up scheme 1 leads to the lowest frequency among
other lamination configurations.

As observed in Figs. 8-10, the second viscoelastic layer
configuration provides superior damping performance
under different boundary conditions, leading to faster
dissipation of beam vibrations. For example, for a
sandwich beam with a clamped-free boundary condition,
vibrations are reduced by more than 99% within 3.96
seconds when using the second configuration. In contrast,
the corresponding reduction times for the first, third, and
fourth lamination configurations are 4.29, 4.32, and 4.68
seconds, respectively. The results for other boundary
conditions are summarized in Table 5.

Table 5.
Effect of different lamination configurations on the vibration decay time
Boundary
Conditions Lay-upl Lay-up2 Lay-up3 Lay-up4
Clamped-Free 429s 3.96s 432s 4.68 s
Clamped- 267s 2125 278 2745
Clamped
Simply 2155 1.70's 256 2395
supported

3.2.3. Damping capability

The influence of the lay-up configuration on the
reduction of dynamic vibrations and the damping behavior
of sandwich beams is investigated in this subsection. For
the four distinct lay-up schemes shown in Fig. 1, the time
history of the beams' maximum deflection is estimated
using the finite element simulation. It is worth noting that
the analyzed sandwich beams were initially subjected to a
predefined initial deformation and subsequently released.
The analyzed sandwich beams are assumed to have three
different boundary conditions: clamped-free, simply
supported, and clamped-clamped. The deflection time-
history of sandwich beams with different boundary
conditions are shown in Figs. 6a, 6b, and 6¢.
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Fig. 6. Effect of lay-up configuration on the time-history response of
sandwich beams: (a) clamped-clamped, (b) simply support, (c)
clamped-free

3.3. Effect of axial location of PVB layers on creep
deformations and damping capability

In the previous section, the optimal placement of the
viscoelastic layers across the beam’s thickness was
investigated. The results indicated that, regardless of the
boundary conditions, placing the viscoelastic layers at the
central part of the beam's thickness (i.e., lay-up scheme 2)
provides the highest damping efficiency. In this section, the
effects of axial location of PVB layers on creep
deformations and damping capabilities are investigated.
Based on the results of Section 3.2, the lamination

configuration of all examined sandwich beams of this
section is lay-up no. 2 (see Fig. 1).

3.3.1. Creep deformations

For three different configurations of PVB layer
placement, the creep deformation of the beam under a
uniform distributed load of 2000 N/m? was evaluated
after ten days. The results are illustrated in Figs. 7a, 7b, and
7c. Moreover, the percentage increase in the beam’s creep
deformation during this time frame is summarized in Table
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0 L . L L
— — Configuration 1 - - = Configuration 2
-0.5
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E B e
£ R e _—— e
p
92 -15
=
o
o
& 22
-2.5
-3
(@)
Time (day)
0 2 4 6 10
0 L 1 L L
0.2 4 — —Configuration 1 - - - Configuration 2
E 0.4 - Configuration 3
=
2
=]
o
o
‘S
o
-1.4
(b)
Time (day)
0 2 4 6 8 10
15 . L L .
17 A — — Configuration 1 - = = Configuration 2
€ -19 A Configuration 3
E 1 4
5 M=
= -23 TN e
1= R e
2 .~ TTTT s -e-d
T -25 4 ~
a ~
27 A T
24 T T Tm——— |
-31

(©)
Fig. 7 Effect of the longitudinal position of the PVB layer on the
maximum creep deformation of sandwich beam: (a) simply support,
(b) clamped-clamped, (c) clamped-free
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Table 6.
Percentage increase (%) in long-term deflection of the sandwich beam
for different longitudinal positions of the PVB layers

Boundary . . .
Conditions Configuration 1 Configuration 2 Configuration 3
Clamped-Free 25.04 14.60 4.94
Clamped- 63.86 36.52 63.86
Clamped

Simply support  33.17 66.86 33.17

Table 6 shows that for simply supported and clamped-
clamped sandwich beams, placing the PVB layer within the
middle third of the beam's length minimizes the rate of
time-dependent creep deflections. In contrast, for
clamped-free sandwich beams, the minimum rate of creep
deformations occurs when the PVB layer is located in the
last third of the beam.

3.3.2. Damping capability

For three different axial locations of the PVB layers
shown in Fig. 2, the time-history of the maximum
deflection of the beams are estimated using the finite
element simulation. The analyzed sandwich beams were
subjected to an initial deformation, with various boundary
conditions assumed, including clamped-free, simply
supported, and clamped-clamped, are assumed for them.

Fig. 8a shows the deflection time history of sandwich
beams with clamped-free end conditions. As shown in
Figure 19, placing the PVB layer near the free end of the
cantilever beam leads to a faster attenuation of transverse
vibrations compared to other configurations. The beam
vibration amplitude are reduced by more than 99% after
5.82,5.74, and 5.71 seconds for configurations 1, 2, and 3,
respectively. Although the differences in decay times are
minor, the results highlight that the damping performance
is sensitive to the longitudinal position of the viscoelastic
interlayer, with improved performance observed when the
layer is placed closer to the free end.

Fig. 8b illustrates the dynamic response of a clamped-
clamped sandwich beam under different longitudinal
configurations of the PVB layer. Compared to the
cantilever beams, the clamped-clamped sandwich beams
show significantly faster vibration decay due to increased
global stiffness. The vibrations are nearly damped out
within 0.4 seconds in all cases. Although differences
between the three configurations are minimal, the highest
damping is achieved when the PVB layer is positioned in
the middle third of the beam.

Fig. 8c shows the deflection time history of a simply
supported sandwich beam under different longitudinal
configurations of the PVB layer. All configurations
demonstrate rapid vibration decay, with displacements
significantly reduced within approximately 2.5 seconds.
Among the three configurations, configuration 3 (red
curve) slightly outperforms the others in damping
effectiveness, as it achieves smaller amplitudes sooner.

Fig. 8c indicates that placing the PVB layer in the last third
closest to the hinged support leads to the greatest damping.
When the viscoelastic layer is located in the middle third
of the beam, vibrations dissipate by more than 99% after
2.14 seconds. For positions in the first or last thirds of the
beam (positions 1 and 3), this value is 2.15 and 2.09
seconds, respectively. This suggests that placing the PVB
layer in the last third of the beam contributes to improved
energy dissipation for simply supported beams.
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Fig. 8 Effect of axial location of the PVB layer on the time-history

response of sandwich beams: (a) clamped-free, (b) clamped-clamped,

(c) simply support

These results indicate that the viscoelastic layer's

optimal longitudinal positioning strongly depends on the
beam’s boundary conditions and correlates with the
regions of maximum dynamic deformation. Proper
placement of the PVB layer can significantly enhance the
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damping capacity and reduce the duration of vibrational
responses.

4. Conclusion

This study examined the creep and dynamic behaviors
of sandwich beams including viscoelastic layers using
three-dimensional finite element modeling. Additionally,
the study aimed to identify the optimal position of
viscoelastic layers through the thickness and along the
beam's length to maximize damping performance and
minimize creep deformations. The accuracy of the finite
element model was confirmed by comparing its results
with experimental results available in the literature. The
key findings of this research are summarized as follows:

e The developed three-dimensional finite
element model demonstrated high accuracy in
predicting both the creep behavior and the free
vibration of sandwich beams incorporating
viscoelastic layers.

e The inclusion of viscoelastic layers had a
pronounced impact on the dynamic response of
the sandwich beams, notably enhancing their
damping capacity.

e Despite improving damping performance
under dynamic loads, the viscoelastic layers
contributed to creep behavior, resulting in
increased long-term deformations under
sustained service loads.

e Independent of the sandwich beam's boundary
conditions, placing the viscoelastic layer near
the neutral axis (i.e., at the mid-thickness)
maximizes the damping effect.

e Positioning viscoelastic layers far from the
neutral axis of the beam (i.e., at the top and
bottom of the host beam) minimizes long-term
creep deformations, irrespective of the
boundary conditions.

e  For clamped-free sandwich beams, placing the
viscoelastic layer in the last third of the beam’s
length (near the free end) provides the highest
damping performance. For simply supported
beams, placing the PVB layer in the last third
closest to the hinged support leads to improved
energy dissipation. In contrast, for the
clamped-clamped boundary condition, the
optimal damping is achieved when the
viscoelastic layer is positioned in the central
third of the beam.
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