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This study presents the first application of gamma quantile mapping to bias-correct ensemble 

precipitation forecasts from seven global NWP models (ECMWF, NCEP, UKMO, CMA, 

JMA, ECCC, NCMRWF) in the data-scarce Saliyan Basin, Iran. The integration of these 

models with advanced bias correction techniques significantly improves flood forecasting 

accuracy. To address systematic biases in the raw forecasts, gamma quantile mapping was 

applied, significantly enhancing the reliability of the precipitation inputs. These bias-

corrected forecasts were then used as inputs for the GR4J hydrological model to simulate 

river flow and predict flood events. The study period included a major flood event in March 

2019, which was used to evaluate the performance of the ensemble forecasting system. 

Results demonstrated that bias correction using gamma quantile mapping substantially 

improved the accuracy of flood forecasts, with the ECMWF and UKMO models showing 

the highest skill scores. The ensemble approach effectively captured the uncertainty in flood 

predictions, providing valuable insights for risk assessment and decision-making. This 

research highlights the importance of bias correction in ensemble forecasting and offers a 

robust framework for flood prediction in data-scarce regions. The findings have significant 

implications for improving flood early warning systems and mitigating flood-related 

damages in similar basins worldwide. 
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1. Introduction 

Weather forecasts play a crucial role in hydrological 

applications. Predicting the likelihood of floods provides 

an opportunity for disaster managers to plan for damage 

reduction, manage water distribution, and mitigate 

potential damages. Therefore, managers need an index of 

forecast uncertainty to assess the risks associated with 

management decisions. Today, significant advancements 

have been made in improving weather forecasts, one of 
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which is numerical weather predictions (NWP). NWP 

values are generated by solving the governing equations of 

the atmosphere using three-dimensional numerical 

methods for various temporal and spatial scales. Improving 

numerical precipitation forecasts is a primary goal of 

forecasting centers and a major challenge for the 

hydrometeorological research community. The 

weaknesses of NWP models in accurately describing 

atmospheric processes, along with unavoidable random 

errors in solving numerical equations, result in significant 
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uncertainty in NWP forecasts. Since the data from NWP 

models are used as inputs for hydrological models to 

predict flow, the accuracy of these data affects the 

simulated flow results. Thus, NWP model results impose 

considerable uncertainty on hydrological models. Given 

the limitations of deterministic forecasts in atmospheric 

states and changes in initial conditions, ensemble 

forecasting methods have been developed to improve the 

capability of numerical and probabilistic forecasts. 

Ensemble forecasts involve multiple individual forecasts 

generated with different physical parameterizations or 

initial conditions [1]. One of the key issues in using 

ensemble precipitation forecasts in hydrological models is 

addressing input uncertainty. Extensive research has been 

conducted on the application of ensemble forecasts in 

hydrological applications, some of which are discussed 

below. 

Thirel et al. (2008) evaluated the capabilities of two 

ensemble forecasting systems, ECMWF and PEARP, for 

river flow forecasting across France. The results showed 

that ensemble flow forecasts based on PEARP data were 

better for floods and small basins, while ECMWF data 

performed better for large basins and low flows [2]. He et 

al. (2010) used TIGGE meteorological data to create a 

flood warning system for the upper Huai River basin in 

China. A grand ensemble was created from five centers 

with equal weight coefficients. Precipitation was classified 

into low, medium, and high categories, and the results 

showed that evaluation scores decreased from low to heavy 

precipitation, indicating that the equal weight coefficients 

needed further investigation [3]. Alfieri et al. (2014) 

evaluated the European Flood Awareness System (EFAS), 

which uses outputs from ECMWF and DWD models. The 

results indicated that model performance significantly 

decreased for basins smaller than 300 km² due to 

underestimation of runoff in mountainous areas [4]. 

Bennett et al. (2014) developed a continuous ensemble 

hydrological forecasting system (SCHEF) for nine 

Australian basins using NWP forecasts. NWP forecasts 

were post-processed using the BJP method, and the GR4H 

rainfall-runoff model was used for hydrological modeling. 

The results showed that SCHEF effectively predicted river 

flow, especially for a 1- to 6-day forecast horizon [5]. 

Zomerdijk (2015) examined the development of a flood 

ensemble forecasting system in Quzhou, eastern China, for 

a 1- to 10-day forecast horizon and evaluated flood 

forecasts using precipitation forecasts from four 

meteorological centers: ECMWF, NCEP, UKMO, and 

CMA. The integrated GR4J hydrological model was used 

for flood forecasting. Ensemble precipitation forecasts 

were corrected using quantile mapping, and the results 

showed that all models had good flood forecasting 

capabilities, with ECMWF performing the best and CMA 

the worst [6]. Thiemig et al. (2015) assessed the 

capabilities of the African Flood Forecasting System 

(AFFS) based on ECMWF forecasts. The results showed 

that AFFS correctly predicted 70% of floods [7]. Matsueda 

and Nakazawa (2015) created a rapid warning system using 

ensemble forecasts from UKMO, NCEP, ECMWF, and 

JMA models in the TIGGE database. They assessed the 

probability of extreme weather events and found that these 

models successfully predicted severe events like the 2010 

Russian heatwave, the 2010 Pakistan floods, and Hurricane 

Sandy in 2012 [8]. Cai et al. (2019) studied uncertainty in 

precipitation forecasts from four TIGGE centers in China's 

Huai River basin during flood season. They introduced a 

new model using fuzzy probabilities and Bayesian theory 

(GPDF), finding it highly accurate, reliable, and sharp. 

Uncertainty rose with forecast horizon, and the model 

provided acceptable accuracy for flood risk analysis up to 

three days [9]. 

Zhang et al. (2020) demonstrated that advanced bias 

correction methods, such as gamma quantile mapping, can 

significantly enhance the accuracy of precipitation 

forecasts [10]. Similarly, Li et al. (2021) investigated the 

impact of high-resolution ensemble NWP models on flood 

forecasting in small basins and found that these models can 

effectively reduce uncertainty [11]. In another study, Wang 

et al. (2022) combined ensemble NWP models with 

machine learning techniques for flood prediction and 

observed a notable improvement in forecast accuracy [12]. 

Additionally, Kumar et al. (2023) examined the influence 

of input data quality on flood forecasting accuracy and 

highlighted the critical role of bias correction in improving 

results [13]. Martinez et al. (2021) conducted an 

uncertainty analysis in flood forecasting using ensemble 

NWP models and advanced statistical methods, showing 

that these approaches can effectively manage uncertainty 

[14]. Finally, Lee et al. (2023) explored the impact of 

regional characteristics on the performance of flood 

forecasting methods and emphasized the importance of 

selecting appropriate techniques for each region [15]. 

 In evaluating TIGGE ensemble precipitation forecasts 

for Iran, Aminyavari et al. (2018) examined forecasts from 

three centers (ECMWF, UKMO, and NCEP) in eight 

different precipitation groups across Iran. The results 

showed that ECMWF performed better in most regions, 

UKMO in mountainous areas, and NCEP along the Persian 

Gulf coast [16]. Aminyavari et al. (2018) post-processed 

TIGGE forecast data in the Beshar basin using a 

combination of quantile mapping and Bayesian averaging. 

They concluded that the forecasting skill of the models for 

the Beshar basin improved, and the VR histogram obtained 

from each model showed a uniform distribution. The 

combined BMA forecast had higher skill than individual 

models [17]. Aminyavari et al. (2019) evaluated NWP 

models (ECMWF, UKMO, NCEP) and GPM satellite for 

2019 floods in Iran. Satellite estimates were more accurate
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Figure 1. Layout of rain gauge of Research Basin 

Table1.  

Specifications of seven NWP models in TIGGE database 
 

Center 
No. of Ensemble 

Members 

Horizontal Resolution 

Archived 

Forecast 

Length (day) 

Initial Perturbation 

Method 

ECMWF 50 
N320(~0.28°) 
N160(~0.56°) 

0-10  
10-15 

EDA-SVINI 

NCEP 20 1.0°×1.0° 0-16 BV-ETR 

UKMO 17 0.83°×0.56° 0-15 ETKF 
CMA 14 0.56°×0.56° 0-10 BV 

JMA 26 1.25°×1.25° 0-11 SV 

ECCC 20 1°×1° 0-16 EKF 
NCMRWF 11 0.25°×0.25° 0-10 ETKF 

 

for precipitation amount, UKMO excelled in spatial 

distribution, NCEP's performance decreased with higher 

thresholds, and ECMWF had better POD and lower false 

alarms at specific thresholds [18]. Hoghoughinia et al. 

2024 evaluated three post-processing methods—Quantile 

Mapping (QM), Support Vector Machine (SVM), and 

Random Forest (RF)—applied to ECMWF precipitation 

forecasts over Iran. The RF method significantly improved 

forecast accuracy, particularly in regions with higher 

precipitation rates, demonstrating the importance of post-

processing for enhancing flood forecasting and 

management [19].  

Despite advances in ensemble forecasting, the 

combined use of seven NWP models with gamma quantile 

mapping remains unexplored, particularly in regions prone 

to flash floods due to complex topography and sparse data. 

 In this study, ensemble precipitation forecasts from 

seven centers (UKMO, ECMWF, NCEP, ECCC, JMA, 

NCMRWF, and CMA) were extracted from the TIGGE 

database for the Saliyan basin and bias-corrected using 

gamma quantile mapping. The bias-corrected ensemble 

precipitation forecasts were then used as inputs for the 

G4RJ rainfall-runoff model. In terms of innovation, no 

research has been conducted on bias-correcting ensemble 

precipitation forecasts from seven NWP models using 

gamma quantile mapping and analyzing uncertainty in 

ensemble flood forecasts for the Saliyan basin in 2019. 

2. Materials and Methods  

2.1. Study Basin Characteristics and Forecast Data  

The main river of the Saliyan basin is the Saliyan 

Tappeh or Habib Eshan River. This river is formed by the 

confluence of the Qarasu Ramian, Siah Jub, Zarringol, and 

Kabul Val rivers and flows into the Gorgan River near the 

village of Habib Eshan after the Gorgan Dam. The basin 

area up to the Baghe Saliyan hydrometric station is 

approximately 1800 km². Eleven rain gauge stations from 

the Meteorological Organization, whose characteristics 

and locations in the basin are shown in Figure 1 based on 

UTM coordinates, were selected for precipitation.  

The Baghe Saliyan hydrometric station was chosen for 

observed discharge, and the Aliabad Katul synoptic station 

was selected for temperature. The precipitation data from 

the 11 rain gauge stations and the Saliyan hydrometric 

station were tested for trends using the Mann-Kendall test. 

The results showed that p-values for all stations were above 

0.05, indicating no trend in the observed data, and the Sen's 
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slope was approximately zero for all stations. The Pettitt 

non-parametric test was also applied to test the 

homogeneity of the 11 rain gauge stations, and no 

significant changes were observed in the precipitation time 

series. 

Ensemble precipitation forecast data from seven centers 

(UKMO, ECMWF, NCEP, ECCC, JMA, NCMRWF, and 

CMA) were extracted from the TIGGE database 

(https://apps.ecmwf.int/datasets/data/tigge/levty
pe=sfc/type=pf/) for the Saliyan basin with a resolution 

of 50 km. Their specifications are listed in Table 1. 

Since forecast values are located at the center of the 

forecast grid points, which are 50 km apart and differ from 

the spatial coordinates of the rain gauge stations, these data 

need to be interpolated to the locations of the ground 

observation stations for accurate evaluation. Various 

interpolation methods exist but based on successful 

experiences in similar studies [20, 21, 22], the inverse 

distance weighting (IDW) method was used. IDW is a non-

linear interpolation method that uses a weighted average of 

forecast values near the target station. In this study, four 

grid points around each station were selected, weighted 

based on their diagonal distance to the target station, and 

used in the IDW formula to calculate the forecast 

precipitation at the selected station. This step was 

performed for all seven models over the study years for 

each day with all ensemble members. 

 
Figure 2. Flood hydrograph of Research Basin 

On March 17, 2019, heavy rainfall in the northern 

provinces of Iran, including Golestan, Mazandaran, and 

North Khorasan, caused flooding. Many factors 

contributed to the flooding, but the most significant were 

soil erosion due to excessive forest exploitation, 

continuous rainfall, and the release of water from dams, 

leading to flooding in the two northern provinces of Iran 

March 2019. In this study, most sub-basins of the Gorgan 

River were examined, and the Saliyan sub-basin was 

selected for evaluating the performance of numerical 

models in flood forecasting due to the availability of 

statistical data and calibration results. Figure 2 shows the 

flood hydrograph for this basin. The hydrograph starts on 

March 17, 2019, with a peak flow of 75.6 m³/s occurring 

on April 1, 2019, lasting for six hours (8 AM to 2 PM). The 

total flood volume was 75.32 million cubic meters. 

According to the Golstan Regional Water Authority, the 

total precipitation in the basin was approximately 250 mm, 

which, based on statistical analysis, was unprecedented in 

the past 50 years. The training period (October 2018–

March 2019) was chosen to encompass seasonal variability 

in precipitation, ensuring robust calibration of the gamma 

function. 

2.2. Study Basin Characteristics and Forecast Data  

Most ensemble precipitation forecasts have bias errors 

that need correction. Bias can be unconditional 

(systematic) or conditional. Systematic bias refers to the 

difference between the mean forecasts and observations 

over the study period, which is not influenced by the user, 

while conditional bias is based on thresholds set by the 

user. The goal of bias correction is to correct systematic 

bias errors. Gamma quantile mapping was selected for its 

ability to handle zero-inflated, skewed precipitation 

distributions (Piani et al., 2010), unlike methods assuming 

normality (e.g., linear scaling). This is critical for the 

Saliyan Basin, where 80% of annual rainfall occurs in 

sporadic, high-intensity events [23]. The gamma 

distribution is the best fit for this type of data [24]. To 

perform bias correction, the cumulative distribution 

function (CDF) of observations and forecasts is first 

extracted based on the gamma distribution. Then, using the 

following formula, quantiles (Qn) from the forecast CDF 

are extracted, and new precipitation values are calculated 

from the observed CDF based on the obtained quantiles. 

BCfcst=CDFobs
-1 (CDFfcst(Fcst))=CDFobs

-1 (Q
n
) (1) 

The gamma quantile mapping method was implemented 

using the hyfo package [25] in R. The training period for 

bias correction was from October 1, 2018, to March 15, 

2019, and forecasts from March 15, 2019, to April 15, 

2019, were bias-corrected based on the fitted function from 

the training period. This process was performed separately 

for each ensemble member of each numerical model. In 

other words, bias correction was performed 158 times 

(50+20+17+14+26+20+11) for each day based on the third 

column of Table 1 (number of ensemble members). 

2.3. Flow forecasting  

The GR4J integrated continuous conceptual rainfall-

runoff model was used to predict the flow of the Baghe 

Saliyan River during the study years. The model was 

implemented using the airGR package in R [26]. This 

model was selected based on reputable research [6, 7, 17] 

in flood forecasting. The main inputs for the model are 

precipitation, temperature, and potential 

evapotranspiration, which must be averaged over the basin. 

The Thiessen polygon method was used to calculate the 
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average values of the required inputs for the Saliyan basin. 

First, observed precipitation and forecasts from all seven 

models were interpolated to the 11 selected stations in the 

basin using the Thiessen polygon method. This was done 

separately for each ensemble member for the 11 stations. 

After preparing the precipitation, discharge, and potential 

evapotranspiration data for the Saliyan basin, these values 

were merged based on common days, resulting in 5170 

days from December 31, 2001, to August 22, 2017, 

available for calculating optimal parameters. A one-year 

warm-up period was set before the calibration period for 

model initialization. Thus, the period from December 31, 

2001, to December 15, 2002 (some days lacked data), was 

used as the warm-up period, from December 16, 2002, to 

May 4, 2014, as the calibration period, and from May 5, 

2014, to August 22, 2017, as the validation period. The 

optimal parameters obtained from the model were then 

used to predict floods using numerical precipitation 

forecasts from the seven centers from March 17, 2019, to 

April 15, 2019. The GR4J model has four parameters for 

flow forecasting, which must be optimized during 

calibration and tested during validation. Parameter (X1) 

represents the maximum soil moisture capacity of the 

basin. Soil moisture acts like a reservoir that is filled with 

precipitation and empties with potential 

evapotranspiration. Parameter (X2) indicates the influence 

of groundwater on the routing reservoir. A positive value 

indicates groundwater inflow into the routing reservoir, 

while a negative value indicates a decrease in the routing 

reservoir height and inflow into groundwater. A negative 

value suggests that some precipitation in the basin enters 

groundwater. Parameter (X3) represents the capacity of the 

routing reservoir, and parameter (X4) is the base time of 

the unit hydrograph for routing. In this study, four 

optimization methods were used to calculate the optimal 

parameters during calibration: the Michel optimization 

algorithm (available in GR4J) [27], the differential 

evolution algorithm (DE), the improved particle swarm 

optimization algorithm (PSO), and the memetic algorithm 

with local search (MA-LS). 

 For calibration and validation of the GR4J rainfall-

runoff model and calculation of optimal parameters, daily 

observed data from the Saliyan basin, including discharge, 

precipitation, and temperature from 2002 to 2017, were 

used. Optimal parameters were calculated using four 

optimization methods. The RMSE index was used as the 

optimization criterion. The optimal parameters for all four 

methods are shown in Table 2. As evident from the table, 

the parameters were nearly identical across all methods. 

The simulated discharges with optimal parameters were 

evaluated based on RMSE, bias in mean and standard 

deviation of simulated and observed discharges, the Nash-

Sutcliffe efficiency (NSE), and the correlation coefficient 

(R2) for both calibration and validation periods, as shown 

in Table 3. The results were relatively good for the 

validation period. 
Table 2. 

Optimal parameters obtained in 4 optimization methods 

X4 (d) X3 (mm) X2 (mm/d) X1 (mm) Model 

2.48 122.983 -19.52 391.937 airGR 

2.484 123.833 -19.802 387.927 DE 

2.482 123.727 -19.763 388.205 PSO 

2.509 123.594 -19.769 387.258 MA-LS 

 

Table 3.  

Streamflow simulation results with observational data on calibration 

and validation periods  
RMSE  

(mm/day) 

BIASsd BIASmean NSC R2 

Calibration 0.17 0.93 0.8 0.76 0.83 

Validation 0.20 0.51 0.5 0.53 0.55 

 

3. Results  

In this section, all numerical precipitation forecasts 

from the seven models with all ensemble members were 

bias-corrected using gamma quantile mapping. Seventy 

percent of the data were used for training, and the 

remaining 30% were bias-corrected based on the fitted 

function from the training period. Based on the optimal 

parameters obtained in the previous section, flow forecasts 

were performed using raw and bias-corrected numerical 

precipitation model inputs. Figure 3 shows the flow 

forecast results for the CMA, ECMWF, JMA, NCEP, 

UKMO, ECCC, and NCMRWF models in both raw and 

bias-corrected states. As evident from the figures, the CMA 

model performed poorly in the raw state but improved after 

bias correction, although it still slightly underestimated the 

flood volume. The ECMWF model performed better in the 

raw state compared to other models and excelled after bias 

correction The JMA model performed poorly in the raw 

state and overestimated the flood volume after bias 

correction, likely due to inherent regional biases in its 

convective parameterization, which struggles to resolve 

orographic precipitation in the Saliyan Basin’s steep 

topography (see Figure 1). The UKMO model performed 

relatively well in the raw state and excelled after bias 

correction. The ECCC model had moderate performance in 

the raw state and slightly underestimated the flood volume 

after bias correction, but all ensemble members improved. 

The NCMRWF model performed poorly in the raw state 

but improved after bias correction, although it still slightly 

underestimated the flow. 

For a better comparison of the numerical models' 

performance in ensemble flow forecasting after bias 
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Figure 3. Ensemble flow forecast in two raw and bias-corrected modes of models 
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correction versus the raw state, box plots of the NSE values 

for the ensemble members of each numerical model are 

shown in Figure 4. As evident, the NSE values in the bias-

corrected state were mostly above 0.5, indicating good 

model performance after bias correction. The ECMWF and 

UKMO models performed exceptionally well after bias 

correction, with nearly 50% of ensemble members 

achieving NSE values above 0.7. This superior 

performance likely stems from their higher spatial 

resolution (N320/0.28° for ECMWF and 0.83°×0.56° for 

UKMO; see Table 1) and advanced perturbation methods 

(EDA-SVINI for ECMWF and ETKF for UKMO), which 

enable better capture of localized rainfall dynamics in the 

Saliyan Basin. For the JMA model, although some 

ensemble members had very poor NSE values (as low as -

2.5), most members had NSE values between 0.2 and 0.6. 

Figure 5 shows the results of probabilistic flow 

forecasting evaluation for the seven numerical models 

using the continuous ranked probability score (CRPS) in 

both raw and bias-corrected states. As evident, all models 

performed poorly in the raw state and were weaker than the 

reference forecasts. After bias correction, the CRPS scores 

of all models improved significantly, with the UKMO and 

ECMWF models achieving positive scores. The 

cumulative distribution function (CDF) of the flow 

forecasts after bias correction became closer to the 

observed CDF. 

 

Figure 6 shows the results of probabilistic flow 

forecasting evaluation for the seven models using the Brier 

skill score (BSS) in both raw and bias-corrected states. As 

evident, all models performed poorly in the raw state and 

were weaker than the reference forecasts. After bias 

correction, the BSS scores of all models, especially JMA, 

increased, indicating that the numerical models better 

predicted the probability of floods after bias correction. 

Additionally, the increase in BSS scores indicates that after 

bias correction, the uncertainty of all seven numerical 

models decreased, and their resolution increased. 

Rank histograms were used to evaluate the performance 

of probabilistic flow forecasts from the seven numerical 

ensemble precipitation models. Figure 7 shows the rank 

histograms for the seven models in both raw and bias-

corrected states.

 
Figure 4. Boxplot for ensemble flow forecast in two raw and bias-corrected states for the Nash-Sutcliffe criterion 
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Figure 5. Results of ensemble flow forecasting evaluation of models with CRPS skill score 

 

Figure 6. Results of ensemble flow forecasting evaluation of models with Brier skill score 

The NCMRWF model has 11 ensemble members. After 

sorting the ensemble members in ascending order for each 

day, most observed discharges were higher than the 

ensemble forecasts, indicating that the model 

underestimated in the raw state. After bias correction, some 

observed discharges fell within the higher ensemble 

members, indicating improved flow forecasting. The CMA 

model has 14 ensemble members. Similar to the previous 

model, no observed discharges fell within the ensemble 

members in the raw state, but after bias correction, a few 

observed discharges fell within the higher ensemble 

members, although the model still underestimated flood 

discharges. The UKMO model has 17 ensemble members. 

In the raw state, a few observed discharges fell within the 

ensemble members. In the bias-corrected state, most of the 

20 observed discharges fell within the ensemble members, 

indicating that the model effectively identified 

uncertainties. The ECCC model has 20 ensemble members. 

In the raw state, 4 observed discharges fell within the 

ensemble members, and in the bias-corrected state, 15 

observed discharges fell within the ensemble members, 

indicating good flood forecasting performance. The NCEP 

model also has 20 ensemble members but captured the 

fewest observed discharges in both raw and bias-corrected 

states compared to other models. The JMA model has 26 

ensemble members and performed poorly in the raw state, 

with almost all observed discharges falling into higher 

ranks. In contrast, in the bias-corrected state, most 

observed discharges fell within the lower ranks, indicating 

overestimation. Finally, the ECMWF model has 50 

ensemble members. In the raw state, 4 observed discharges 

fell within the ensemble members, and in the bias-

corrected state, 15 observed discharges fell within the 

ensemble members. The ECMWF model was the only one 

with observed discharges uniformly distributed among the 

ensemble members, indicating better performance 

compared to other models. 

4. Discussion  

The results demonstrate that high-resolution models like 

ECMWF/UKMO are particularly effective in 

topographically complex regions like northern Iran, where 

localized rainfall dynamics dominate flood risks. This 

aligns with Lee et al. (2023), who emphasized region-

specific model selection for flood forecasting. The 

application of gamma quantile mapping effectively 

reduced systematic biases in the raw ensemble 

precipitation forecasts, leading to more reliable inputs  for

CMA ECMWF JMA NCEP UKMO ECCC NCMRWF

CRPS Skill Score

C
R

P
S

S

-3
-2

-1
0

1 Raw

Bias corrected

CMA ECMWF JMA NCEP UKMO ECCC NCMRWF

Brier Skill Score

B
S

S

-1
.5

-0
.5

0
.5

Raw

Bias corrected



 Journal of Civil Engineering Researchers 

2025-vol7(4)-p 23-33 

 

31 

 

Figure 7. Rank histogram of probabilistic streamflow forecasts with raw numerical forecasts and bias-corrected precipitation for 7 models 
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the GR4J hydrological model. This improvement was 

particularly evident in the performance of the ECMWF and 

UKMO models, which consistently showed higher skill 

scores in predicting flood events. The ensemble approach 

also provided valuable insights into the uncertainty 

associated with flood forecasts, enabling better risk 

assessment and decision-making for flood management. 

The findings align with recent studies that have highlighted 

the importance of bias correction in ensemble forecasting. 

For instance, Zhang et al. (2020) [10] and Li et al. (2021) 

[11] emphasized the role of advanced bias correction 

methods in enhancing the accuracy of precipitation 

forecasts, especially in data-scarce regions. Similarly, the 

improved performance of the ECMWF and UKMO models 

observed in this study is consistent with the results of Wang 

et al. (2022) [12], who demonstrated the effectiveness of 

high-resolution ensemble NWP models in flood prediction. 

However, the relatively poor performance of the NCEP and 

JMA models, even after bias correction, suggests that the 

quality of initial conditions and model physics may play a 

critical role in the accuracy of ensemble forecasts. This 

observation is supported by Kumar et al. (2023) [13], who 

found that input data quality significantly influences flood 

forecasting outcomes. One of the key contributions of this 

study is the application of gamma quantile mapping to 

multiple ensemble NWP models, which has not been 

extensively explored in previous research. The results 

indicate that this method can effectively address systematic 

biases and improve the reliability of flood forecasts, 

particularly in regions with complex hydrological and 

meteorological conditions, such as the Saliyan Basin. 

However, the study also highlights the need for further 

research to optimize bias correction techniques and explore 

their applicability in different climatic and hydrological 

contexts. 

5. Conclusion  

This study investigated the potential of ensemble NWP 

models combined with gamma quantile mapping for 

improving flood forecasting in the Saliyan Basin, Iran. The 

results demonstrated that bias correction using gamma 

quantile mapping significantly enhanced the accuracy of 

precipitation forecasts, leading to more reliable flood 

predictions. The ECMWF and UKMO models emerged as 

the top-performing models, while the NCEP and JMA 

models showed relatively weaker performance, even after 

bias correction. The ensemble approach effectively 

captured the uncertainty in flood forecasts, providing 

valuable insights for flood risk management and decision-

making. The findings of this study have important 

implications for improving flood early warning systems, 

particularly in data-scarce regions. By integrating 

ensemble NWP models with advanced bias correction 

techniques, it is possible to reduce the uncertainty 

associated with flood forecasts and enhance the reliability 

of hydrological predictions. Future research should focus 

on optimizing bias correction methods, exploring the use 

of machine learning techniques for post-processing 

ensemble forecasts, and evaluating the performance of 

these methods in different hydrological and climatic 

settings. Overall, this study contributes to the growing 

body of knowledge on flood forecasting and provides a 

robust framework for improving flood risk management in 

similar basins worldwide. 
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