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ABSTRACT

This study presents the first application of gamma quantile mapping to bias-correct ensemble
precipitation forecasts from seven global NWP models (ECMWEF, NCEP, UKMO, CMA,
JMA, ECCC, NCMRWF) in the data-scarce Saliyan Basin, Iran. The integration of these
models with advanced bias correction techniques significantly improves flood forecasting
accuracy. To address systematic biases in the raw forecasts, gamma quantile mapping was
applied, significantly enhancing the reliability of the precipitation inputs. These bias-
corrected forecasts were then used as inputs for the GR4J hydrological model to simulate
river flow and predict flood events. The study period included a major flood event in March
2019, which was used to evaluate the performance of the ensemble forecasting system.
Results demonstrated that bias correction using gamma quantile mapping substantially
improved the accuracy of flood forecasts, with the ECMWF and UKMO models showing
the highest skill scores. The ensemble approach effectively captured the uncertainty in flood
predictions, providing valuable insights for risk assessment and decision-making. This
research highlights the importance of bias correction in ensemble forecasting and offers a
robust framework for flood prediction in data-scarce regions. The findings have significant
implications for improving flood early warning systems and mitigating flood-related
damages in similar basins worldwide.
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1. Introduction

Weather forecasts play a crucial role in hydrological
applications. Predicting the likelihood of floods provides
an opportunity for disaster managers to plan for damage
reduction, manage water distribution, and mitigate
potential damages. Therefore, managers need an index of
forecast uncertainty to assess the risks associated with
management decisions. Today, significant advancements
have been made in improving weather forecasts, one of

" Corresponding author. Tel.: +989112912393; e-mail: saleh1161a@gmail.com.

which is numerical weather predictions (NWP). NWP
values are generated by solving the governing equations of
the atmosphere using three-dimensional numerical
methods for various temporal and spatial scales. Improving
numerical precipitation forecasts is a primary goal of
forecasting centers and a major challenge for the
hydrometeorological ~ research community. The
weaknesses of NWP models in accurately describing
atmospheric processes, along with unavoidable random
errors in solving numerical equations, result in significant
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uncertainty in NWP forecasts. Since the data from NWP
models are used as inputs for hydrological models to
predict flow, the accuracy of these data affects the
simulated flow results. Thus, NWP model results impose
considerable uncertainty on hydrological models. Given
the limitations of deterministic forecasts in atmospheric
states and changes in initial conditions, ensemble
forecasting methods have been developed to improve the
capability of numerical and probabilistic forecasts.
Ensemble forecasts involve multiple individual forecasts
generated with different physical parameterizations or
initial conditions [1]. One of the key issues in using
ensemble precipitation forecasts in hydrological models is
addressing input uncertainty. Extensive research has been
conducted on the application of ensemble forecasts in
hydrological applications, some of which are discussed
below.

Thirel et al. (2008) evaluated the capabilities of two
ensemble forecasting systems, ECMWF and PEARP, for
river flow forecasting across France. The results showed
that ensemble flow forecasts based on PEARP data were
better for floods and small basins, while ECMWF data
performed better for large basins and low flows [2]. He et
al. (2010) used TIGGE meteorological data to create a
flood warning system for the upper Huai River basin in
China. A grand ensemble was created from five centers
with equal weight coefficients. Precipitation was classified
into low, medium, and high categories, and the results
showed that evaluation scores decreased from low to heavy
precipitation, indicating that the equal weight coefficients
needed further investigation [3]. Alfieri et al. (2014)
evaluated the European Flood Awareness System (EFAS),
which uses outputs from ECMWF and DWD models. The
results indicated that model performance significantly
decreased for basins smaller than 300 km? due to
underestimation of runoff in mountainous areas [4].
Bennett et al. (2014) developed a continuous ensemble
hydrological forecasting system (SCHEF) for nine
Australian basins using NWP forecasts. NWP forecasts
were post-processed using the BJP method, and the GR4H
rainfall-runoff model was used for hydrological modeling.
The results showed that SCHEF effectively predicted river
flow, especially for a 1- to 6-day forecast horizon [5].
Zomerdijk (2015) examined the development of a flood
ensemble forecasting system in Quzhou, eastern China, for
a 1- to 10-day forecast horizon and evaluated flood
forecasts using precipitation forecasts from four
meteorological centers: ECMWF, NCEP, UKMO, and
CMA. The integrated GR4J hydrological model was used
for flood forecasting. Ensemble precipitation forecasts
were corrected using quantile mapping, and the results
showed that all models had good flood forecasting
capabilities, with ECMWF performing the best and CMA
the worst [6]. Thiemig et al. (2015) assessed the

capabilities of the African Flood Forecasting System
(AFFS) based on ECMWF forecasts. The results showed
that AFFS correctly predicted 70% of floods [7]. Matsueda
and Nakazawa (2015) created a rapid warning system using
ensemble forecasts from UKMO, NCEP, ECMWF, and
JMA models in the TIGGE database. They assessed the
probability of extreme weather events and found that these
models successfully predicted severe events like the 2010
Russian heatwave, the 2010 Pakistan floods, and Hurricane
Sandy in 2012 [8]. Cai et al. (2019) studied uncertainty in
precipitation forecasts from four TIGGE centers in China's
Huai River basin during flood season. They introduced a
new model using fuzzy probabilities and Bayesian theory
(GPDF), finding it highly accurate, reliable, and sharp.
Uncertainty rose with forecast horizon, and the model
provided acceptable accuracy for flood risk analysis up to
three days [9].

Zhang et al. (2020) demonstrated that advanced bias
correction methods, such as gamma quantile mapping, can
significantly enhance the accuracy of precipitation
forecasts [10]. Similarly, Li et al. (2021) investigated the
impact of high-resolution ensemble NWP models on flood
forecasting in small basins and found that these models can
effectively reduce uncertainty [11]. In another study, Wang
et al. (2022) combined ensemble NWP models with
machine learning techniques for flood prediction and
observed a notable improvement in forecast accuracy [12].
Additionally, Kumar et al. (2023) examined the influence
of input data quality on flood forecasting accuracy and
highlighted the critical role of bias correction in improving
results [13]. Martinez et al. (2021) conducted an
uncertainty analysis in flood forecasting using ensemble
NWP models and advanced statistical methods, showing
that these approaches can effectively manage uncertainty
[14]. Finally, Lee et al. (2023) explored the impact of
regional characteristics on the performance of flood
forecasting methods and emphasized the importance of
selecting appropriate techniques for each region [15].

In evaluating TIGGE ensemble precipitation forecasts
for Iran, Aminyavari et al. (2018) examined forecasts from
three centers (ECMWF, UKMO, and NCEP) in eight
different precipitation groups across Iran. The results
showed that ECMWF performed better in most regions,
UKMO in mountainous areas, and NCEP along the Persian
Gulf coast [16]. Aminyavari et al. (2018) post-processed
TIGGE forecast data in the Beshar basin using a
combination of quantile mapping and Bayesian averaging.
They concluded that the forecasting skill of the models for
the Beshar basin improved, and the VR histogram obtained
from each model showed a uniform distribution. The
combined BMA forecast had higher skill than individual
models [17]. Aminyavari et al. (2019) evaluated NWP
models (ECMWF, UKMO, NCEP) and GPM satellite for
2019 floods in Iran. Satellite estimates were more accurate

2025-vol7(4)-p 23-33



Journal of Civil Engineering Researchers 25

70000

1470000

AZAD SHAHR

DADRAGH_NOORI

1450000 N

KHANBEN

.
*
SHIR ABAD

MAZRAEH KATOOL *

¥ g MAZIARAN

BADE KATOOL
5 ZARRIN_GOL

"y PA-GHAL-EH(GOLES TAN)

14300004

AFRA TAKHTEH PAEEN
1420000

® Hydrometric Station
% IRIMO Raingauge Station
% Synoptic Station

1410000

River
;,s'""‘ basin
Figure 1. Layout of rain gauge of Research Basin
Tablel.
Specifications of seven NWP models in TIGGE database
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Center No. of Ensemble  Horizontal Resolution Forecast Initial Perturbation

Members Archived Length (day) Method
N320(~0.28°) 0-10

ECMWF 50 N160(~0.56°) 10-15 EDA-SVINI

NCEP 20 1.0°x1.0° 0-16 BV-ETR

UKMO 17 0.83°x0.56° 0-15 ETKF

CMA 14 0.56°x0.56° 0-10 BV

IMA 26 1.25°x1.25° 0-11 SV

ECCC 20 1°x1° 0-16 EKF

NCMRWF 11 0.25°x0.25° 0-10 ETKF

for precipitation amount, UKMO excelled in spatial
distribution, NCEP's performance decreased with higher
thresholds, and ECMWF had better POD and lower false
alarms at specific thresholds [18]. Hoghoughinia et al.
2024 evaluated three post-processing methods—Quantile
Mapping (QM), Support Vector Machine (SVM), and
Random Forest (RF)—applied to ECMWF precipitation
forecasts over Iran. The RF method significantly improved
forecast accuracy, particularly in regions with higher
precipitation rates, demonstrating the importance of post-

processing for enhancing flood forecasting and
management [19].
Despite advances in ensemble forecasting, the

combined use of seven NWP models with gamma quantile
mapping remains unexplored, particularly in regions prone
to flash floods due to complex topography and sparse data.

In this study, ensemble precipitation forecasts from
seven centers (UKMO, ECMWF, NCEP, ECCC, JMA,
NCMRWF, and CMA) were extracted from the TIGGE
database for the Saliyan basin and bias-corrected using
gamma quantile mapping. The bias-corrected ensemble
precipitation forecasts were then used as inputs for the
G4RJ rainfall-runoff model. In terms of innovation, no
research has been conducted on bias-correcting ensemble
precipitation forecasts from seven NWP models using

gamma quantile mapping and analyzing uncertainty in
ensemble flood forecasts for the Saliyan basin in 2019.

2. Materials and Methods
2.1. Study Basin Characteristics and Forecast Data

The main river of the Saliyan basin is the Saliyan
Tappeh or Habib Eshan River. This river is formed by the
confluence of the Qarasu Ramian, Siah Jub, Zarringol, and
Kabul Val rivers and flows into the Gorgan River near the
village of Habib Eshan after the Gorgan Dam. The basin
area up to the Baghe Saliyan hydrometric station is
approximately 1800 km?. Eleven rain gauge stations from
the Meteorological Organization, whose characteristics
and locations in the basin are shown in Figure 1 based on
UTM coordinates, were selected for precipitation.

The Baghe Saliyan hydrometric station was chosen for
observed discharge, and the Aliabad Katul synoptic station
was selected for temperature. The precipitation data from
the 11 rain gauge stations and the Saliyan hydrometric
station were tested for trends using the Mann-Kendall test.
The results showed that p-values for all stations were above
0.05, indicating no trend in the observed data, and the Sen's

2025-vol7(4)-p 23-33



26 Journal of Civil Engineering Researchers

slope was approximately zero for all stations. The Pettitt
non-parametric test was also applied to test the
homogeneity of the 11 rain gauge stations, and no
significant changes were observed in the precipitation time
series.

Ensemble precipitation forecast data from seven centers
(UKMO, ECMWF, NCEP, ECCC, JIMA, NCMRWEF, and
CMA) were extracted from the TIGGE database
(https://apps.ecmwf.int/datasets/data/tigge/levty
pe=sfc/type=pt/) for the Saliyan basin with a resolution
of 50 km. Their specifications are listed in Table 1.

Since forecast values are located at the center of the
forecast grid points, which are 50 km apart and differ from
the spatial coordinates of the rain gauge stations, these data
need to be interpolated to the locations of the ground
observation stations for accurate evaluation. Various
interpolation methods exist but based on successful
experiences in similar studies [20, 21, 22], the inverse
distance weighting (IDW) method was used. IDW is a non-
linear interpolation method that uses a weighted average of
forecast values near the target station. In this study, four
grid points around each station were selected, weighted
based on their diagonal distance to the target station, and
used in the IDW formula to calculate the forecast
precipitation at the selected station. This step was
performed for all seven models over the study years for
each day with all ensemble members.

100
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0 48 96 144 192 240 288 336 384 432 480
time (hr)

Figure 2. Flood hydrograph of Research Basin

On March 17, 2019, heavy rainfall in the northern
provinces of Iran, including Golestan, Mazandaran, and
North  Khorasan, caused flooding. Many factors
contributed to the flooding, but the most significant were
soil erosion due to excessive forest exploitation,
continuous rainfall, and the release of water from dams,
leading to flooding in the two northern provinces of Iran
March 2019. In this study, most sub-basins of the Gorgan
River were examined, and the Saliyan sub-basin was
selected for evaluating the performance of numerical
models in flood forecasting due to the availability of
statistical data and calibration results. Figure 2 shows the
flood hydrograph for this basin. The hydrograph starts on
March 17, 2019, with a peak flow of 75.6 m®/s occurring
on April 1, 2019, lasting for six hours (§ AM to 2 PM). The
total flood volume was 75.32 million cubic meters.

According to the Golstan Regional Water Authority, the
total precipitation in the basin was approximately 250 mm,
which, based on statistical analysis, was unprecedented in
the past 50 years. The training period (October 2018—
March 2019) was chosen to encompass seasonal variability
in precipitation, ensuring robust calibration of the gamma
function.

2.2. Study Basin Characteristics and Forecast Data

Most ensemble precipitation forecasts have bias errors
that need correction. Bias can be unconditional
(systematic) or conditional. Systematic bias refers to the
difference between the mean forecasts and observations
over the study period, which is not influenced by the user,
while conditional bias is based on thresholds set by the
user. The goal of bias correction is to correct systematic
bias errors. Gamma quantile mapping was selected for its
ability to handle zero-inflated, skewed precipitation
distributions (Piani et al., 2010), unlike methods assuming
normality (e.g., linear scaling). This is critical for the
Saliyan Basin, where 80% of annual rainfall occurs in
sporadic, high-intensity events [23]. The gamma
distribution is the best fit for this type of data [24]. To
perform bias correction, the cumulative distribution
function (CDF) of observations and forecasts is first
extracted based on the gamma distribution. Then, using the
following formula, quantiles (Qn) from the forecast CDF
are extracted, and new precipitation values are calculated
from the observed CDF based on the obtained quantiles.

BCre=CDF s (CDFyy(Fest)=CDFs(Q,,) (1)

The gamma quantile mapping method was implemented
using the hyfo package [25] in R. The training period for
bias correction was from October 1, 2018, to March 15,
2019, and forecasts from March 15, 2019, to April 15,
2019, were bias-corrected based on the fitted function from
the training period. This process was performed separately
for each ensemble member of each numerical model. In
other words, bias correction was performed 158 times
(50+20+17+14+26+20+11) for each day based on the third
column of Table 1 (number of ensemble members).

2.3. Flow forecasting

The GR4J integrated continuous conceptual rainfall-
runoff model was used to predict the flow of the Baghe
Saliyan River during the study years. The model was
implemented using the airGR package in R [26]. This
model was selected based on reputable research [6, 7, 17]
in flood forecasting. The main inputs for the model are
precipitation, temperature, and potential
evapotranspiration, which must be averaged over the basin.
The Thiessen polygon method was used to calculate the
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average values of the required inputs for the Saliyan basin.
First, observed precipitation and forecasts from all seven
models were interpolated to the 11 selected stations in the
basin using the Thiessen polygon method. This was done
separately for each ensemble member for the 11 stations.
After preparing the precipitation, discharge, and potential
evapotranspiration data for the Saliyan basin, these values
were merged based on common days, resulting in 5170
days from December 31, 2001, to August 22, 2017,
available for calculating optimal parameters. A one-year
warm-up period was set before the calibration period for
model initialization. Thus, the period from December 31,
2001, to December 15, 2002 (some days lacked data), was
used as the warm-up period, from December 16, 2002, to
May 4, 2014, as the calibration period, and from May 5,
2014, to August 22, 2017, as the validation period. The
optimal parameters obtained from the model were then
used to predict floods using numerical precipitation
forecasts from the seven centers from March 17, 2019, to
April 15, 2019. The GR4J model has four parameters for
flow forecasting, which must be optimized during
calibration and tested during validation. Parameter (X1)
represents the maximum soil moisture capacity of the
basin. Soil moisture acts like a reservoir that is filled with
precipitation and empties with potential
evapotranspiration. Parameter (X2) indicates the influence
of groundwater on the routing reservoir. A positive value
indicates groundwater inflow into the routing reservoir,
while a negative value indicates a decrease in the routing
reservoir height and inflow into groundwater. A negative
value suggests that some precipitation in the basin enters
groundwater. Parameter (X3) represents the capacity of the
routing reservoir, and parameter (X4) is the base time of
the unit hydrograph for routing. In this study, four
optimization methods were used to calculate the optimal
parameters during calibration: the Michel optimization
algorithm (available in GR4J) [27], the differential
evolution algorithm (DE), the improved particle swarm
optimization algorithm (PSO), and the memetic algorithm
with local search (MA-LS).

For calibration and validation of the GR4J rainfall-
runoff model and calculation of optimal parameters, daily
observed data from the Saliyan basin, including discharge,
precipitation, and temperature from 2002 to 2017, were
used. Optimal parameters were calculated using four
optimization methods. The RMSE index was used as the
optimization criterion. The optimal parameters for all four
methods are shown in Table 2. As evident from the table,
the parameters were nearly identical across all methods.

The simulated discharges with optimal parameters were
evaluated based on RMSE, bias in mean and standard
deviation of simulated and observed discharges, the Nash-
Sutcliffe efficiency (NSE), and the correlation coefficient
(R2) for both calibration and validation periods, as shown

in Table 3. The results were relatively good for the
validation period.
Table 2.

Optimal parameters obtained in 4 optimization methods
Model X1 (mm) X2 (mm/d) X3 (mm) X4 (d)

airGR 391937  -19.52 122983 248

DE 387.927  -19.802 123.833  2.484

PSO 388.205  -19.763 123.727  2.482

MA-LS 387258  -19.769 123.594  2.509
Table 3.

Streamflow simulation results with observational data on calibration
and validation periods

RMSE BIASy  BIASpen NSC  R?
(mm/day)
Calibration  0.17 0.93 0.8 0.76 083
Validation ~ 0.20 0.51 0.5 0.53 055

3. Results

In this section, all numerical precipitation forecasts
from the seven models with all ensemble members were
bias-corrected using gamma quantile mapping. Seventy
percent of the data were used for training, and the
remaining 30% were bias-corrected based on the fitted
function from the training period. Based on the optimal
parameters obtained in the previous section, flow forecasts
were performed using raw and bias-corrected numerical
precipitation model inputs. Figure 3 shows the flow
forecast results for the CMA, ECMWF, JMA, NCEP,
UKMO, ECCC, and NCMRWF models in both raw and
bias-corrected states. As evident from the figures, the CMA
model performed poorly in the raw state but improved after
bias correction, although it still slightly underestimated the
flood volume. The ECMWF model performed better in the
raw state compared to other models and excelled after bias
correction The JMA model performed poorly in the raw
state and overestimated the flood volume after bias
correction, likely due to inherent regional biases in its
convective parameterization, which struggles to resolve
orographic precipitation in the Saliyan Basin’s steep
topography (see Figure 1). The UKMO model performed
relatively well in the raw state and excelled after bias
correction. The ECCC model had moderate performance in
the raw state and slightly underestimated the flood volume
after bias correction, but all ensemble members improved.
The NCMRWF model performed poorly in the raw state
but improved after bias correction, although it still slightly
underestimated the flow.

For a better comparison of the numerical models'
performance in ensemble flow forecasting after bias
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Figure 3. Ensemble flow forecast in two raw and bias-corrected modes of models
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correction versus the raw state, box plots of the NSE values
for the ensemble members of each numerical model are
shown in Figure 4. As evident, the NSE values in the bias-
corrected state were mostly above 0.5, indicating good
model performance after bias correction. The ECMWF and
UKMO models performed exceptionally well after bias
correction, with nearly 50% of ensemble members
achieving NSE values above 0.7. This superior
performance likely stems from their higher spatial
resolution (N320/0.28° for ECMWF and 0.83°x0.56° for
UKMO; see Table 1) and advanced perturbation methods
(EDA-SVINI for ECMWF and ETKF for UKMO), which
enable better capture of localized rainfall dynamics in the
Saliyan Basin. For the JMA model, although some
ensemble members had very poor NSE values (as low as -
2.5), most members had NSE values between 0.2 and 0.6.

Figure 5 shows the results of probabilistic flow
forecasting evaluation for the seven numerical models
using the continuous ranked probability score (CRPS) in
both raw and bias-corrected states. As evident, all models
performed poorly in the raw state and were weaker than the
reference forecasts. After bias correction, the CRPS scores

of all models improved significantly, with the UKMO and
ECMWF models achieving positive scores. The
cumulative distribution function (CDF) of the flow
forecasts after bias correction became closer to the
observed CDF.

Figure 6 shows the results of probabilistic flow
forecasting evaluation for the seven models using the Brier
skill score (BSS) in both raw and bias-corrected states. As
evident, all models performed poorly in the raw state and
were weaker than the reference forecasts. After bias
correction, the BSS scores of all models, especially JMA,
increased, indicating that the numerical models better
predicted the probability of floods after bias correction.
Additionally, the increase in BSS scores indicates that after
bias correction, the uncertainty of all seven numerical
models decreased, and their resolution increased.

Rank histograms were used to evaluate the performance
of probabilistic flow forecasts from the seven numerical
ensemble precipitation models. Figure 7 shows the rank
histograms for the seven models in both raw and bias-
corrected states.
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Figure 4. Boxplot for ensemble flow forecast in two raw and bias-corrected states for the Nash-Sutcliffe criterion
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Figure 6. Results of ensemble flow forecasting evaluation of models with Brier skill score

The NCMRWF model has 11 ensemble members. After
sorting the ensemble members in ascending order for each
day, most observed discharges were higher than the
ensemble forecasts, indicating that the model
underestimated in the raw state. After bias correction, some
observed discharges fell within the higher ensemble
members, indicating improved flow forecasting. The CMA
model has 14 ensemble members. Similar to the previous
model, no observed discharges fell within the ensemble
members in the raw state, but after bias correction, a few
observed discharges fell within the higher ensemble
members, although the model still underestimated flood
discharges. The UKMO model has 17 ensemble members.
In the raw state, a few observed discharges fell within the
ensemble members. In the bias-corrected state, most of the
20 observed discharges fell within the ensemble members,
indicating that the model effectively identified
uncertainties. The ECCC model has 20 ensemble members.
In the raw state, 4 observed discharges fell within the
ensemble members, and in the bias-corrected state, 15
observed discharges fell within the ensemble members,
indicating good flood forecasting performance. The NCEP
model also has 20 ensemble members but captured the
fewest observed discharges in both raw and bias-corrected
states compared to other models. The JMA model has 26

ensemble members and performed poorly in the raw state,
with almost all observed discharges falling into higher
ranks. In contrast, in the bias-corrected state, most
observed discharges fell within the lower ranks, indicating
overestimation. Finally, the ECMWF model has 50
ensemble members. In the raw state, 4 observed discharges
fell within the ensemble members, and in the bias-
corrected state, 15 observed discharges fell within the
ensemble members. The ECMWF model was the only one
with observed discharges uniformly distributed among the
ensemble members, indicating better performance
compared to other models.

4. Discussion

The results demonstrate that high-resolution models like
ECMWF/UKMO  are particularly effective in
topographically complex regions like northern Iran, where
localized rainfall dynamics dominate flood risks. This
aligns with Lee et al. (2023), who emphasized region-
specific model selection for flood forecasting. The
application of gamma quantile mapping effectively
reduced systematic biases in the raw ensemble
precipitation forecasts, leading to more reliable inputs for
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Figure 7. Rank histogram of probabilistic streamflow forecasts with raw numerical forecasts and bias-corrected precipitation for 7 models
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the GR4J hydrological model. This improvement was
particularly evident in the performance of the ECMWF and
UKMO models, which consistently showed higher skill
scores in predicting flood events. The ensemble approach
also provided valuable insights into the uncertainty
associated with flood forecasts, enabling better risk
assessment and decision-making for flood management.
The findings align with recent studies that have highlighted
the importance of bias correction in ensemble forecasting.
For instance, Zhang et al. (2020) [10] and Li et al. (2021)
[11] emphasized the role of advanced bias correction
methods in enhancing the accuracy of precipitation
forecasts, especially in data-scarce regions. Similarly, the
improved performance of the ECMWF and UKMO models
observed in this study is consistent with the results of Wang
et al. (2022) [12], who demonstrated the effectiveness of
high-resolution ensemble NWP models in flood prediction.
However, the relatively poor performance of the NCEP and
JMA models, even after bias correction, suggests that the
quality of initial conditions and model physics may play a
critical role in the accuracy of ensemble forecasts. This
observation is supported by Kumar et al. (2023) [13], who
found that input data quality significantly influences flood
forecasting outcomes. One of the key contributions of this
study is the application of gamma quantile mapping to
multiple ensemble NWP models, which has not been
extensively explored in previous research. The results
indicate that this method can effectively address systematic
biases and improve the reliability of flood forecasts,
particularly in regions with complex hydrological and
meteorological conditions, such as the Saliyan Basin.
However, the study also highlights the need for further
research to optimize bias correction techniques and explore
their applicability in different climatic and hydrological
contexts.

5. Conclusion

This study investigated the potential of ensemble NWP
models combined with gamma quantile mapping for
improving flood forecasting in the Saliyan Basin, Iran. The
results demonstrated that bias correction using gamma
quantile mapping significantly enhanced the accuracy of
precipitation forecasts, leading to more reliable flood
predictions. The ECMWF and UKMO models emerged as
the top-performing models, while the NCEP and JMA
models showed relatively weaker performance, even after
bias correction. The ensemble approach effectively
captured the uncertainty in flood forecasts, providing
valuable insights for flood risk management and decision-
making. The findings of this study have important
implications for improving flood early warning systems,
particularly in data-scarce regions. By integrating

ensemble NWP models with advanced bias correction
techniques, it is possible to reduce the uncertainty
associated with flood forecasts and enhance the reliability
of hydrological predictions. Future research should focus
on optimizing bias correction methods, exploring the use
of machine learning techniques for post-processing
ensemble forecasts, and evaluating the performance of
these methods in different hydrological and climatic
settings. Overall, this study contributes to the growing
body of knowledge on flood forecasting and provides a
robust framework for improving flood risk management in
similar basins worldwide.
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